Als «survival» getaggte Fragen

Die Überlebensanalyse modelliert die Zeit bis zum Ereignis, normalerweise die Zeit bis zum Tod oder die Ausfallzeit. Zensierte Daten sind ein häufiges Problem bei Überlebensanalysen.

1
Warum haben Anova () und drop1 () unterschiedliche Antworten für GLMMs geliefert?
Ich habe ein GLMM der Form: lmer(present? ~ factor1 + factor2 + continuous + factor1*continuous + (1 | factor3), family=binomial) Wenn ich benutze drop1(model, test="Chi"), erhalte ich andere Ergebnisse als wenn ich Anova(model, type="III")aus dem Autopaket oder benutze summary(model). Diese beiden letzteren geben die gleichen Antworten. Unter Verwendung einer Reihe …
10 r  anova  glmm  r  mixed-model  bootstrap  sample-size  cross-validation  roc  auc  sampling  stratification  random-allocation  logistic  stata  interpretation  proportion  r  regression  multiple-regression  linear-model  lm  r  cross-validation  cart  rpart  logistic  generalized-linear-model  econometrics  experiment-design  causality  instrumental-variables  random-allocation  predictive-models  data-mining  estimation  contingency-tables  epidemiology  standard-deviation  mean  ancova  psychology  statistical-significance  cross-validation  synthetic-data  poisson-distribution  negative-binomial  bioinformatics  sequence-analysis  distributions  binomial  classification  k-means  distance  unsupervised-learning  euclidean  correlation  chi-squared  spearman-rho  forecasting  excel  exponential-smoothing  binomial  sample-size  r  change-point  wilcoxon-signed-rank  ranks  clustering  matlab  covariance  covariance-matrix  normal-distribution  simulation  random-generation  bivariate  standardization  confounding  z-statistic  forecasting  arima  minitab  poisson-distribution  negative-binomial  poisson-regression  overdispersion  probability  self-study  markov-process  estimation  maximum-likelihood  classification  pca  group-differences  chi-squared  survival  missing-data  contingency-tables  anova  proportion 

3
Mittlere Überlebenszeit für eine logarithmisch normale Überlebensfunktion
Ich habe viele Formeln gefunden, die zeigen, wie man die mittlere Überlebenszeit für eine Exponential- oder Weibull-Verteilung ermittelt, aber ich habe erheblich weniger Glück für logarithmisch normale Überlebensfunktionen. Bei folgender Überlebensfunktion: S.( t ) = 1 - ϕ [ ln( t ) - μσ]]S(t)=1−ϕ[ln⁡(t)−μσ]S(t) = 1 - \phi \left[ {{{\ln …
10 survival 

2
So führen Sie eine ROC-Analyse in R mit einem Cox-Modell durch
Ich habe einige Cox-Regressionsmodelle erstellt und möchte sehen, wie gut diese Modelle funktionieren. Ich dachte, dass möglicherweise eine ROC-Kurve oder eine c-Statistik nützlich sein könnte, ähnlich wie in diesem Artikel: JN Armitage und JH van der Meulen, "Identifizierung der Komorbidität bei chirurgischen Patienten unter Verwendung von Verwaltungsdaten mit dem Charlson …
10 r  survival  roc 

4
Gesamtbild zur Überlebensanalyse und Lebensdatenanalyse
Ich habe von Überlebensanalysen und Lebensdatenanalysen gehört, verstehe aber nicht ganz das Gesamtbild. Ich habe mich gefragt, welche Themen sie behandeln. Handelt es sich um reine Statistik oder nur um die Anwendung von Statistiken in einem bestimmten Bereich? Ist die Lebensdatumsanalyse Teil der Überlebensanalyse? Danke und Grüße!



2
Überlebensraten-Trends in Fall-Kontroll-Studien
Ich habe einen Artikel eingereicht, der aufgrund der unsachgemäßen Durchführung der Überlebensanalyse abgelehnt wurde. Der Schiedsrichter hinterließ keine anderen Details oder Erklärungen als: "Die Überlebensanalyse von Zeittrends erfordert differenziertere Zensurmethoden." Die Frage: Wurde das übermäßige Todesrisiko bei Rauchern in den letzten Jahrzehnten verringert? Daten: 25.000 Raucher in Deutschland. Sie wurden …

4
Zeitdiskretes Ereignisverlaufsmodell (Überlebensmodell) in R.
Ich versuche, ein zeitdiskretes Modell in R einzubauen, bin mir aber nicht sicher, wie ich das machen soll. Ich habe gelesen, dass Sie die abhängige Variable in verschiedenen Zeilen organisieren können, eine für jede glmZeitbeobachtung , und die Funktion mit einem Logit- oder Cloglog-Link verwenden können. In diesem Sinne, ich …
10 r  survival  pca  sas  matlab  neural-networks  r  logistic  spatial  spatial-interaction-model  r  time-series  econometrics  var  statistical-significance  t-test  cross-validation  sample-size  r  regression  optimization  least-squares  constrained-regression  nonparametric  ordinal-data  wilcoxon-signed-rank  references  neural-networks  jags  bugs  hierarchical-bayesian  gaussian-mixture  r  regression  svm  predictive-models  libsvm  scikit-learn  probability  self-study  stata  sample-size  spss  wilcoxon-mann-whitney  survey  ordinal-data  likert  group-differences  r  regression  anova  mathematical-statistics  normal-distribution  random-generation  truncation  repeated-measures  variance  variability  distributions  random-generation  uniform  regression  r  generalized-linear-model  goodness-of-fit  data-visualization  r  time-series  arima  autoregressive  confidence-interval  r  time-series  arima  autocorrelation  seasonality  hypothesis-testing  bayesian  frequentist  uninformative-prior  correlation  matlab  cross-correlation 

1
R lineare Regression kategoriale Variable "versteckter" Wert
Dies ist nur ein Beispiel, auf das ich mehrmals gestoßen bin, daher habe ich keine Beispieldaten. Ausführen eines linearen Regressionsmodells in R: a.lm = lm(Y ~ x1 + x2) x1ist eine stetige Variable. x2ist kategorisch und hat drei Werte, z. B. "Niedrig", "Mittel" und "Hoch". Die von R gegebene Ausgabe …
10 r  regression  categorical-data  regression-coefficients  categorical-encoding  machine-learning  random-forest  anova  spss  r  self-study  bootstrap  monte-carlo  r  multiple-regression  partitioning  neural-networks  normalization  machine-learning  svm  kernel-trick  self-study  survival  cox-model  repeated-measures  survey  likert  correlation  variance  sampling  meta-analysis  anova  independence  sample  assumptions  bayesian  covariance  r  regression  time-series  mathematical-statistics  graphical-model  machine-learning  linear-model  kernel-trick  linear-algebra  self-study  moments  function  correlation  spss  probability  confidence-interval  sampling  mean  population  r  generalized-linear-model  prediction  offset  data-visualization  clustering  sas  cart  binning  sas  logistic  causality  regression  self-study  standard-error  r  distributions  r  regression  time-series  multiple-regression  python  chi-squared  independence  sample  clustering  data-mining  rapidminer  probability  stochastic-processes  clustering  binary-data  dimensionality-reduction  svd  correspondence-analysis  data-visualization  excel  c#  hypothesis-testing  econometrics  survey  rating  composite  regression  least-squares  mcmc  markov-process  kullback-leibler  convergence  predictive-models  r  regression  anova  confidence-interval  survival  cox-model  hazard  normal-distribution  autoregressive  mixed-model  r  mixed-model  sas  hypothesis-testing  mediation  interaction 

3
Modell für die Behandlung von Redundanzen mit zufälligen Effekten
Ich versuche, mit einer Time-to-Event-Analyse unter Verwendung wiederholter binärer Ergebnisse umzugehen. Angenommen, die Zeit bis zum Ereignis wird in Tagen gemessen, aber im Moment diskretisieren wir die Zeit auf Wochen. Ich möchte einen Kaplan-Meier-Schätzer mit wiederholten binären Ergebnissen approximieren (aber Kovariaten berücksichtigen). Dies scheint ein Umweg zu sein, aber ich …

2
Kaplan-Meier-Kurven scheinen etwas anderes zu sagen als die Cox-Regression
In R mache ich eine Überlebensdatenanalyse von Krebspatienten. Ich habe sehr hilfreiche Artikel über Überlebensanalysen in CrossValidated und anderen Orten gelesen und denke, ich habe verstanden, wie man die Cox-Regressionsergebnisse interpretiert. Ein Ergebnis nervt mich jedoch immer noch ... Ich vergleiche das Überleben mit dem Geschlecht. Die Kaplan-Meier-Kurven sprechen eindeutig …

4
Wie interpretiere ich eine Überlebenskurve des Cox-Hazard-Modells?
Wie interpretieren Sie eine Überlebenskurve aus dem Cox-Proportional-Hazard-Modell? Nehmen wir in diesem Spielzeugbeispiel an, wir haben ein Cox-Proportional-Hazard-Modell für ageVariablen in kidneyDaten und generieren die Überlebenskurve. library(survival) fit <- coxph(Surv(time, status)~age, data=kidney) plot(conf.int="none", survfit(fit)) grid() Welche Aussage ist zum Zeitpunkt zum Beispiel wahr? oder sind beide falsch?200200200 Statement 1: Wir …


2
Wie bewertet man die Anpassungsgüte für Überlebensfunktionen?
Ich bin ein Neuling in der Überlebensanalyse, obwohl ich einige Kenntnisse in Klassifikation und Regression habe. Für die Regression haben wir MSE- und R-Quadrat-Statistiken. Aber wie können wir sagen, dass das Überlebensmodell A neben einigen grafischen Darstellungen (KM-Kurve) dem Überlebensmodell B überlegen ist? Wenn möglich, erläutern Sie den Unterschied anhand …

1
Wie man mit R Überlebensdaten mit zeitabhängigen Kovariaten generiert
Ich möchte die Überlebenszeit aus einem Cox-Proportional-Hazards-Modell generieren, das eine zeitabhängige Kovariate enthält. Das Modell ist h(t|Xi)=h0(t)exp(γXi+αmi(t))h(t|Xi)=h0(t)exp⁡(γXi+αmi(t))h(t|X_i) =h_0(t) \exp(\gamma X_i + \alpha m_{i}(t)) wobei aus Binomial (1,0.5) und .m i ( t ) = β 0 + β 1 X i + β 2 X i tXiXiX_imi(t)=β0+β1Xi+β2Xitmi(t)=β0+β1Xi+β2Xitm_{i}(t)=\beta_0 + \beta_1 X_{i} …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.