Als «glmm» getaggte Fragen

Verallgemeinerte lineare gemischte (Effekt-) Modelle werden typischerweise zum Modellieren nicht unabhängiger nicht normaler Daten (z. B. longitudinale Binärdaten) verwendet.

3
So erhalten Sie das Konfidenzintervall für die Änderung des Populations-R-Quadrats
Als einfaches Beispiel wird angenommen, dass es zwei lineare Regressionsmodelle gibt Modell 1 hat drei Prädiktoren x1a, x2bundx2c Modell 2 hat drei Prädiktoren aus Modell 1 und zwei zusätzliche Prädiktoren x2aundx2b Es gibt eine Populationsregressionsgleichung, bei der die erklärte Populationsvarianz für Modell 1 für Modell 2 . Die durch Modell …

1
Wie baue ich einen innovativen Ausreißer bei Beobachtung 48 in mein ARIMA-Modell ein?
Ich arbeite an einem Datensatz. Nachdem ich einige Modellidentifikationstechniken angewendet hatte, kam ich mit einem ARIMA (0,2,1) -Modell heraus. Ich habe die detectIOFunktion im Paket TSAin R verwendet, um bei der 48. Beobachtung meines ursprünglichen Datensatzes einen innovativen Ausreißer (IO) zu erkennen . Wie kann ich diesen Ausreißer in mein …
10 r  time-series  arima  outliers  hypergeometric  fishers-exact  r  time-series  intraclass-correlation  r  logistic  glmm  clogit  mixed-model  spss  repeated-measures  ancova  machine-learning  python  scikit-learn  distributions  data-transformation  stochastic-processes  web  standard-deviation  r  machine-learning  spatial  similarities  spatio-temporal  binomial  sparse  poisson-process  r  regression  nonparametric  r  regression  logistic  simulation  power-analysis  r  svm  random-forest  anova  repeated-measures  manova  regression  statistical-significance  cross-validation  group-differences  model-comparison  r  spatial  model-evaluation  parallel-computing  generalized-least-squares  r  stata  fitting  mixture  hypothesis-testing  categorical-data  hypothesis-testing  anova  statistical-significance  repeated-measures  likert  wilcoxon-mann-whitney  boxplot  statistical-significance  confidence-interval  forecasting  prediction-interval  regression  categorical-data  stata  least-squares  experiment-design  skewness  reliability  cronbachs-alpha  r  regression  splines  maximum-likelihood  modeling  likelihood-ratio  profile-likelihood  nested-models 

3
Behoben gegen zufällige Effekte
Ich habe vor kurzem angefangen, etwas über verallgemeinerte lineare gemischte Modelle zu lernen, und habe R verwendet, um herauszufinden, welchen Unterschied es macht, die Gruppenmitgliedschaft entweder als festen oder als zufälligen Effekt zu behandeln. Insbesondere betrachte ich den hier diskutierten Beispieldatensatz: http://www.ats.ucla.edu/stat/mult_pkg/glmm.htm http://www.ats.ucla.edu/stat/r/dae/melogit.htm Wie in diesem Tutorial beschrieben, ist der …

1
Warum haben Anova () und drop1 () unterschiedliche Antworten für GLMMs geliefert?
Ich habe ein GLMM der Form: lmer(present? ~ factor1 + factor2 + continuous + factor1*continuous + (1 | factor3), family=binomial) Wenn ich benutze drop1(model, test="Chi"), erhalte ich andere Ergebnisse als wenn ich Anova(model, type="III")aus dem Autopaket oder benutze summary(model). Diese beiden letzteren geben die gleichen Antworten. Unter Verwendung einer Reihe …
10 r  anova  glmm  r  mixed-model  bootstrap  sample-size  cross-validation  roc  auc  sampling  stratification  random-allocation  logistic  stata  interpretation  proportion  r  regression  multiple-regression  linear-model  lm  r  cross-validation  cart  rpart  logistic  generalized-linear-model  econometrics  experiment-design  causality  instrumental-variables  random-allocation  predictive-models  data-mining  estimation  contingency-tables  epidemiology  standard-deviation  mean  ancova  psychology  statistical-significance  cross-validation  synthetic-data  poisson-distribution  negative-binomial  bioinformatics  sequence-analysis  distributions  binomial  classification  k-means  distance  unsupervised-learning  euclidean  correlation  chi-squared  spearman-rho  forecasting  excel  exponential-smoothing  binomial  sample-size  r  change-point  wilcoxon-signed-rank  ranks  clustering  matlab  covariance  covariance-matrix  normal-distribution  simulation  random-generation  bivariate  standardization  confounding  z-statistic  forecasting  arima  minitab  poisson-distribution  negative-binomial  poisson-regression  overdispersion  probability  self-study  markov-process  estimation  maximum-likelihood  classification  pca  group-differences  chi-squared  survival  missing-data  contingency-tables  anova  proportion 




3
Bakterien, die nach mehreren Oberflächenkontakten an den Fingern aufgenommen wurden: nicht normale Daten, wiederholte Messungen, gekreuzte Teilnehmer
Intro Ich habe Teilnehmer, die unter zwei Bedingungen wiederholt kontaminierte Oberflächen mit E. coli berühren ( A = Handschuhe tragen, B = keine Handschuhe). Ich möchte wissen, ob es einen Unterschied zwischen der Menge an Bakterien auf ihren Fingerspitzen mit und ohne Handschuhe gibt, aber auch zwischen der Anzahl der …

1
Hilfe bei der Interpretation von Zähldaten GLMM mit lme4 glmer und glmer.nb - Negatives Binomial gegenüber Poisson
Ich habe einige Fragen zur Spezifikation und Interpretation von GLMMs. 3 Fragen sind definitiv statistisch und 2 beziehen sich genauer auf R. Ich poste hier, weil ich letztendlich denke, dass das Problem die Interpretation der GLMM-Ergebnisse ist. Ich versuche gerade, ein GLMM zu montieren. Ich verwende US-Volkszählungsdaten aus der Longitudinal …


1
Sollte ich zufällige Effekte von einem Modell ausschließen, wenn sie statistisch nicht signifikant sind?
Sollte ich zufällige Effekte in ein Modell aufnehmen, auch wenn sie statistisch nicht signifikant sind? Ich habe ein experimentelles Design mit wiederholten Messungen, bei dem jeder Einzelne drei verschiedene Behandlungen in zufälliger Reihenfolge erfährt. Ich möchte die Auswirkungen von Individuum und Ordnung kontrollieren, aber keines scheint in meinen Modellen statistisch …



1
Auflösung der Heteroskedastizität in Poisson GLMM
Ich habe Langzeitsammeldaten und möchte testen, ob die Anzahl der gesammelten Tiere von Wettereffekten beeinflusst wird. Mein Modell sieht wie folgt aus: glmer(SumOfCatch ~ I(pc.act.1^2) +I(pc.act.2^2) + I(pc.may.1^2) + I(pc.may.2^2) + SampSize + as.factor(samp.prog) + (1|year/month), control=glmerControl(optimizer="bobyqa", optCtrl=list(maxfun=1e9,npt=5)), family="poisson", data=a2) Erklärung der verwendeten Variablen: SumOfCatch: Anzahl der gesammelten Tiere pc.act.1, …

3
Ein konkretes Beispiel ist die Durchführung einer SVD, um fehlende Werte zu unterstellen
Ich habe die großartigen Kommentare zum Umgang mit fehlenden Werten vor dem Anwenden von SVD gelesen, möchte aber anhand eines einfachen Beispiels wissen, wie dies funktioniert: Movie1 Movie2 Movie3 User1 5 4 User2 2 5 5 User3 3 4 User4 1 5 User5 5 1 5 Wenn ich in der …
8 r  missing-data  data-imputation  svd  sampling  matlab  mcmc  importance-sampling  predictive-models  prediction  algorithms  graphical-model  graph-theory  r  regression  regression-coefficients  r-squared  r  regression  modeling  confounding  residuals  fitting  glmm  zero-inflation  overdispersion  optimization  curve-fitting  regression  time-series  order-statistics  bayesian  prior  uninformative-prior  probability  discrete-data  kolmogorov-smirnov  r  data-visualization  histogram  dimensionality-reduction  classification  clustering  accuracy  semi-supervised  labeling  state-space-models  t-test  biostatistics  paired-comparisons  paired-data  bioinformatics  regression  logistic  multiple-regression  mixed-model  random-effects-model  neural-networks  error-propagation  numerical-integration  time-series  missing-data  data-imputation  probability  self-study  combinatorics  survival  cox-model  statistical-significance  wilcoxon-mann-whitney  hypothesis-testing  distributions  normal-distribution  variance  t-distribution  probability  simulation  random-walk  diffusion  hypothesis-testing  z-test  hypothesis-testing  data-transformation  lognormal  r  regression  agreement-statistics  classification  svm  mixed-model  non-independent  observational-study  goodness-of-fit  residuals  confirmatory-factor  neural-networks  deep-learning 

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.