Als «probit» getaggte Fragen

Dies bezieht sich allgemein auf statistische Verfahren, die die Probit-Funktion verwenden. Das primäre Beispiel hierfür ist die Probit-Regression, bei der die Probit-Transformation des Parameters p einer binären Antwortverteilung als Verknüpfung verwendet wird.


5
Umgang mit hierarchischen / verschachtelten Daten beim maschinellen Lernen
Ich werde mein Problem mit einem Beispiel erklären. Angenommen, Sie möchten das Einkommen einer Person anhand einiger Attribute vorhersagen: {Alter, Geschlecht, Land, Region, Stadt}. Sie haben einen Trainingsdatensatz wie diesen train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", "M","F","M","F", "F","F","F","M")), Income=c(31,42,71,65, 50,51,101,38, 47,50,55,23)) …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 

1
Latent Variable Interpretation von generalisierten linearen Modellen (GLMs)
Kurzfassung: Wir wissen, dass logistische Regression und Probit-Regression so interpretiert werden können, dass sie eine kontinuierliche latente Variable beinhalten, die vor der Beobachtung anhand eines festgelegten Schwellenwerts diskretisiert wird. Steht eine ähnliche latente Variableninterpretation beispielsweise für die Poisson-Regression zur Verfügung? Wie wäre es mit einer binomialen Regression (wie logit oder …

1
2SLS aber zweite Stufe Probit
Ich versuche, mithilfe der Analyse instrumenteller Variablen auf die Kausalität von Beobachtungsdaten zu schließen. Ich bin auf eine zweistufige Regression der kleinsten Fehlerquadrate (2SLS) gestoßen, die wahrscheinlich das Endogenitätsproblem in meiner Forschung angeht. Ich möchte jedoch erstens OLS und zweitens Probit im 2SLS sein. Aufgrund meiner Lektüre und Suche habe …


2
Binäre Modelle (Probit und Logit) mit einem logarithmischen Offset
Hat jemand eine Ableitung, wie ein Offset in binären Modellen wie probit und logit funktioniert? Bei meinem Problem kann das Nachverfolgungsfenster unterschiedlich lang sein. Angenommen, die Patienten erhalten zur Behandlung eine prophylaktische Spritze. Die Aufnahme erfolgt zu unterschiedlichen Zeiten. Wenn das Ergebnis also ein binärer Indikator dafür ist, ob es …



2
Wie funktioniert die „schrittweise Regression“?
Ich habe den folgenden R-Code verwendet, um ein Probit-Modell anzupassen: p1 <- glm(natijeh ~ ., family=binomial(probit), data=data1) stepwise(p1, direction='backward/forward', criterion='BIC') Ich will wissen , was macht stepwiseund backward/forwardgenau das tun , und wie die Variablen wählen?

1
Ableiten der Wahrscheinlichkeitsfunktion für IV-Probit
Ich habe also ein binäres Modell, bei dem die latente unbeobachtete Variable und die beobachtete ist. bestimmt und ist somit mein Instrument. Kurz gesagt, das Modell ist. Da die Fehlerterme nicht unabhängig sind, aber Ich verwende ein IV-Probit-Modell.y∗1y1∗y_1^*y1∈{0,1}y1∈{0,1}y_1 \in \{0,1\}y2y2y_2y1y1y_1z2z2z_2y∗1y2y1===δ1z1+α1y2+u1δ21z1+δ22z2+v2=zδ+v21[y∗>0]y1∗=δ1z1+α1y2+u1y2=δ21z1+δ22z2+v2=zδ+v2y1=1[y∗>0]\begin{eqnarray} y_1^*&=& \delta_1 z_1 + \alpha_1 y_2 + u_1 \\ y_2 …

1
Konsistenz von 2SLS mit binärer endogener Variable
Ich habe gelesen, dass der 2SLS-Schätzer auch mit binären endogenen Variablen konsistent ist ( http://www.stata.com/statalist/archive/2004-07/msg00699.html ). In der ersten Stufe wird anstelle eines linearen Modells ein Probit-Behandlungsmodell ausgeführt. Gibt es einen formalen Beweis dafür, dass 2SLS auch dann noch konsistent ist, wenn die 1. Stufe ein Probit- oder Logit-Modell ist? …

3
So erhalten Sie das Konfidenzintervall für die Änderung des Populations-R-Quadrats
Als einfaches Beispiel wird angenommen, dass es zwei lineare Regressionsmodelle gibt Modell 1 hat drei Prädiktoren x1a, x2bundx2c Modell 2 hat drei Prädiktoren aus Modell 1 und zwei zusätzliche Prädiktoren x2aundx2b Es gibt eine Populationsregressionsgleichung, bei der die erklärte Populationsvarianz für Modell 1 für Modell 2 . Die durch Modell …

1
Welches Deep-Learning-Modell kann Kategorien klassifizieren, die sich nicht gegenseitig ausschließen?
Beispiele: Ich habe einen Satz in der Stellenbeschreibung: "Java Senior Engineer in UK". Ich möchte ein Deep-Learning-Modell verwenden, um es als zwei Kategorien vorherzusagen: English und IT jobs. Wenn ich ein traditionelles Klassifizierungsmodell verwende, kann es nur 1 Etikett mit softmaxFunktion auf der letzten Ebene vorhersagen . Somit kann ich …
9 machine-learning  deep-learning  natural-language  tensorflow  sampling  distance  non-independent  application  regression  machine-learning  logistic  mixed-model  control-group  crossover  r  multivariate-analysis  ecology  procrustes-analysis  vegan  regression  hypothesis-testing  interpretation  chi-squared  bootstrap  r  bioinformatics  bayesian  exponential  beta-distribution  bernoulli-distribution  conjugate-prior  distributions  bayesian  prior  beta-distribution  covariance  naive-bayes  smoothing  laplace-smoothing  distributions  data-visualization  regression  probit  penalized  estimation  unbiased-estimator  fisher-information  unbalanced-classes  bayesian  model-selection  aic  multiple-regression  cross-validation  regression-coefficients  nonlinear-regression  standardization  naive-bayes  trend  machine-learning  clustering  unsupervised-learning  wilcoxon-mann-whitney  z-score  econometrics  generalized-moments  method-of-moments  machine-learning  conv-neural-network  image-processing  ocr  machine-learning  neural-networks  conv-neural-network  tensorflow  r  logistic  scoring-rules  probability  self-study  pdf  cdf  classification  svm  resampling  forecasting  rms  volatility-forecasting  diebold-mariano  neural-networks  prediction-interval  uncertainty 

1
Wie kann man beobachtete mit erwarteten Ereignissen vergleichen?
Angenommen, ich habe eine Stichprobe von Häufigkeiten von 4 möglichen Ereignissen: Event1 - 5 E2 - 1 E3 - 0 E4 - 12 und ich habe die erwarteten Wahrscheinlichkeiten, dass meine Ereignisse eintreten: p1 - 0.2 p2 - 0.1 p3 - 0.1 p4 - 0.6 Mit der Summe der beobachteten …
9 r  statistical-significance  chi-squared  multivariate-analysis  exponential  joint-distribution  statistical-significance  self-study  standard-deviation  probability  normal-distribution  spss  interpretation  assumptions  cox-model  reporting  cox-model  statistical-significance  reliability  method-comparison  classification  boosting  ensemble  adaboost  confidence-interval  cross-validation  prediction  prediction-interval  regression  machine-learning  svm  regularization  regression  sampling  survey  probit  matlab  feature-selection  information-theory  mutual-information  time-series  forecasting  simulation  classification  boosting  ensemble  adaboost  normal-distribution  multivariate-analysis  covariance  gini  clustering  text-mining  distance-functions  information-retrieval  similarities  regression  logistic  stata  group-differences  r  anova  confidence-interval  repeated-measures  r  logistic  lme4-nlme  inference  fiducial  kalman-filter  classification  discriminant-analysis  linear-algebra  computing  statistical-significance  time-series  panel-data  missing-data  uncertainty  probability  multivariate-analysis  r  classification  spss  k-means  discriminant-analysis  poisson-distribution  average  r  random-forest  importance  probability  conditional-probability  distributions  standard-deviation  time-series  machine-learning  online  forecasting  r  pca  dataset  data-visualization  bayes  distributions  mathematical-statistics  degrees-of-freedom 

4
Ist Nichtstationarität in Logit / Probit wichtig?
Ich möchte fragen - ich verwende logit, um zu untersuchen, ob einige Variablen das Risiko von Währungskrisen verbessern. Ich habe jährliche Daten aus dem Jahr 1980 für viele Länder (unausgeglichenes Panel), Dummy-Variable ist 1, wenn Währungskrisen begonnen haben (gemäß meiner Definition), andernfalls 0. Erklärende Variablen sind nach einigen Theorien wie …
8 logit  probit 

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.