Als «poisson-regression» getaggte Fragen

Die Poisson-Regression ist eines von mehreren Regressionsmodellen für abhängige Variablen, bei denen es sich um Zählungen handelt (nicht negative Ganzzahlen). Ein allgemeineres Modell ist die negative binomiale Regression. Beide haben zahlreiche Varianten.

2
Sind Überdispersionstests in GLMs tatsächlich * nützlich *?
Das Phänomen der "Überdispersion" in einem GLM tritt immer dann auf, wenn wir ein Modell verwenden, das die Varianz der Antwortvariablen einschränkt, und die Daten eine größere Varianz aufweisen, als es die Modellbeschränkung zulässt. Dies tritt häufig bei der Modellierung von Zähldaten mit einem Poisson-GLM auf und kann durch bekannte …

1
Null aufgeblasene Poisson-Regression
Angenommen, sind unabhängig undY=(Y1,…,Yn)′Y=(Y1,…,Yn)′ \textbf{Y} = (Y_1, \dots, Y_n)' Yi=0Yi=kwith probability pi+(1−pi)e−λiwith probability (1−pi)e−λiλki/k!Yi=0with probability pi+(1−pi)e−λiYi=kwith probability (1−pi)e−λiλik/k!\eqalign{ Y_i = 0 & \text{with probability} \ p_i+(1-p_i)e^{-\lambda_i}\\ Y_i = k & \text{with probability} \ (1-p_i)e^{-\lambda_i} \lambda_{i}^{k}/k! } Angenommen, die Parameter und erfülltλ=(λ1,…,λn)′λ=(λ1,…,λn)′\mathbf{\lambda} = (\lambda_1, \dots, \lambda_n)'p=(p1,…,pn)p=(p1,…,pn)\textbf{p} = (p_1, \dots, p_n) log(λ)logit(p)=Bβ=log(p/(1−p))=Gλ.log⁡(λ)=Bβlogit(p)=log⁡(p/(1−p))=Gλ.\eqalign{ …



2
Ist es möglich, dass der AIC und der BIC eine völlig unterschiedliche Modellauswahl bieten?
Ich führe ein Poisson-Regressionsmodell mit 1 Antwortvariablen und 6 Kovariaten durch. Die Modellauswahl mit AIC ergibt ein Modell mit allen Kovariaten sowie 6 Interaktionstermen. Der BIC führt jedoch zu einem Modell mit nur 2 Kovariaten und keinen Interaktionstermen. Ist es möglich, dass die beiden Kriterien, die sehr ähnlich aussehen, völlig …

1
GBM-Paket vs. Caret mit GBM
Ich habe das Modell mit optimiert caret, aber dann das Modell mit dem gbmPaket erneut ausgeführt. Nach meinem Verständnis sollten das verwendete caretPaket gbmund die Ausgabe identisch sein. Nur ein kurzer Testlauf mit data(iris)zeigt jedoch eine Diskrepanz im Modell von etwa 5% unter Verwendung von RMSE und R ^ 2 …

1
Wie gehe ich mit Überdispersion in der Poisson-Regression um: Quasi-Wahrscheinlichkeit, negativer binomialer GLM oder zufälliger Effekt auf Subjektebene?
Ich habe drei Vorschläge zur Behandlung der Überdispersion in einer Poisson-Antwortvariablen und einem Startmodell mit allen festen Effekten gefunden: Verwenden Sie ein Quasi-Modell. Verwenden Sie negatives Binomial-GLM. Verwenden Sie ein gemischtes Modell mit einem zufälligen Effekt auf Subjektebene. Aber was soll man eigentlich wählen und warum? Gibt es ein tatsächliches …

2
Vor- und Nachteile der Protokollverknüpfung im Vergleich zur Identitätsverknüpfung für die Poisson-Regression
Ich trage eine Poisson - Regression mit dem Endziel aus zu vergleichen (und die Differenz der Einnahme) die vorhergesagten mittleren Zählungen zwischen zwei Faktorstufen in meinem , während anderes Modell Kovariaten halten (das ist alle binäre ) konstant. Ich habe mich gefragt, ob irgendjemand einen praktischen Rat geben kann, wann …

1
Identische Koeffizienten, geschätzt in Poisson vs. Quasi-Poisson-Modell
Bei der Modellierung von Anspruchszählungsdaten in einer Versicherungsumgebung begann ich mit Poisson, bemerkte dann aber eine Überdispersion. Ein Quasi-Poisson-Modell modellierte die größere Mittelwert-Varianz-Beziehung besser als das Basis-Poisson-Modell, aber ich bemerkte, dass die Koeffizienten sowohl im Poisson- als auch im Quasi-Poisson-Modell identisch waren. Wenn dies kein Fehler ist, warum geschieht dies? …

1
Überdispersions- und Modellierungsalternativen in Poisson-Zufallseffektmodellen mit Offsets
Ich bin auf eine Reihe praktischer Fragen gestoßen, wenn ich Zähldaten aus experimenteller Forschung mithilfe eines subjektinternen Experiments modelliere. Ich beschreibe kurz das Experiment, die Daten und das, was ich bisher gemacht habe, gefolgt von meinen Fragen. Einer Stichprobe von Befragten wurden nacheinander vier verschiedene Filme gezeigt. Nach jedem Film …


1
R / mgcv: Warum produzieren te () und ti () Tensorprodukte unterschiedliche Oberflächen?
Das mgcvPaket für Rhat zwei Funktionen zum Anpassen von Tensorproduktwechselwirkungen: te()und ti(). Ich verstehe die grundlegende Arbeitsteilung zwischen den beiden (Anpassen einer nichtlinearen Wechselwirkung vs. Zerlegen dieser Wechselwirkung in Haupteffekte und eine Wechselwirkung). Was ich nicht verstehe, ist warum te(x1, x2)und ti(x1) + ti(x2) + ti(x1, x2)kann (leicht) unterschiedliche Ergebnisse …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 


1
Warum haben Anova () und drop1 () unterschiedliche Antworten für GLMMs geliefert?
Ich habe ein GLMM der Form: lmer(present? ~ factor1 + factor2 + continuous + factor1*continuous + (1 | factor3), family=binomial) Wenn ich benutze drop1(model, test="Chi"), erhalte ich andere Ergebnisse als wenn ich Anova(model, type="III")aus dem Autopaket oder benutze summary(model). Diese beiden letzteren geben die gleichen Antworten. Unter Verwendung einer Reihe …
10 r  anova  glmm  r  mixed-model  bootstrap  sample-size  cross-validation  roc  auc  sampling  stratification  random-allocation  logistic  stata  interpretation  proportion  r  regression  multiple-regression  linear-model  lm  r  cross-validation  cart  rpart  logistic  generalized-linear-model  econometrics  experiment-design  causality  instrumental-variables  random-allocation  predictive-models  data-mining  estimation  contingency-tables  epidemiology  standard-deviation  mean  ancova  psychology  statistical-significance  cross-validation  synthetic-data  poisson-distribution  negative-binomial  bioinformatics  sequence-analysis  distributions  binomial  classification  k-means  distance  unsupervised-learning  euclidean  correlation  chi-squared  spearman-rho  forecasting  excel  exponential-smoothing  binomial  sample-size  r  change-point  wilcoxon-signed-rank  ranks  clustering  matlab  covariance  covariance-matrix  normal-distribution  simulation  random-generation  bivariate  standardization  confounding  z-statistic  forecasting  arima  minitab  poisson-distribution  negative-binomial  poisson-regression  overdispersion  probability  self-study  markov-process  estimation  maximum-likelihood  classification  pca  group-differences  chi-squared  survival  missing-data  contingency-tables  anova  proportion 


Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.