Künstliche neuronale Netze (ANNs) sind eine breite Klasse von Rechenmodellen, die lose auf biologischen neuronalen Netzen basieren. Sie umfassen Feedforward-NNs (einschließlich "tiefer" NNs), Faltungs-NNs, wiederkehrende NNs usw.
Ich verwende Bidirectional RNN, um ein Ereignis mit unausgeglichenem Auftreten zu erkennen. Die positive Klasse ist 100-mal seltener als die negative Klasse. Obwohl keine Regularisierung verwendet wird, kann ich eine 100% ige Genauigkeit für das Zugset und 30% für das Validierungsset erhalten. Ich schalte die 12-Regularisierung ein und das Ergebnis …
Ich habe einen unausgeglichenen Datensatz in einer binären Klassifizierungsaufgabe, bei der die positive Menge gegenüber der negativen Menge 0,3% gegenüber 99,7% beträgt. Die Kluft zwischen Positiven und Negativen ist groß. Wenn ich ein CNN mit der im MNIST-Problem verwendeten Struktur trainiere, zeigt das Testergebnis eine hohe False Negative Rate. Außerdem …
Ich versuche, ein zeitdiskretes Modell in R einzubauen, bin mir aber nicht sicher, wie ich das machen soll. Ich habe gelesen, dass Sie die abhängige Variable in verschiedenen Zeilen organisieren können, eine für jede glmZeitbeobachtung , und die Funktion mit einem Logit- oder Cloglog-Link verwenden können. In diesem Sinne, ich …
Dies ist nur ein Beispiel, auf das ich mehrmals gestoßen bin, daher habe ich keine Beispieldaten. Ausführen eines linearen Regressionsmodells in R: a.lm = lm(Y ~ x1 + x2) x1ist eine stetige Variable. x2ist kategorisch und hat drei Werte, z. B. "Niedrig", "Mittel" und "Hoch". Die von R gegebene Ausgabe …
Ich habe mich gefragt, wie der Status für LSTMs am besten initialisiert werden kann. Momentan initialisiere ich es einfach auf alle Nullen. Ich kann online nichts darüber finden, wie man es initialisiert. Eine Sache, an die ich gedacht habe, ist, den Ausgangszustand zu einem trainierbaren Parameter zu machen. Irgendein Rat?
Ich bin neu bei Keras und brauche deine Hilfe. Ich trainiere ein neuronales Netz in Keras und meine Verlustfunktion ist die Quadrat-Differenz s / w-Netzleistung und der Zielwert. Ich möchte dies mit Gradient Descent optimieren. Nachdem ich einige Links im Internet durchgesehen habe, habe ich festgestellt, dass es drei Arten …
Aus diesem Video von Andrew Ng gegen 5:00 Uhr Wie werden und abgeleitet? Was bedeutet eigentlich überhaupt? wird durch Vergleich mit y erhalten, ein solcher Vergleich ist für die Ausgabe einer verborgenen Ebene nicht möglich, oder?δ 2 δ 3 δ 4δ3δ3\delta_3δ2δ2\delta_2δ3δ3\delta_3δ4δ4\delta_4
Ich frage mich, welche nützlichen Techniken es gibt, um zu überprüfen, ob eine Implementierung eines neuronalen Netzwerks korrekt funktioniert. Im Folgenden sind einige mir bekannte Schecks aufgeführt. Es würde mich interessieren, mehr davon zu erfahren: Zeichnen einiger Metriken (F1-Punktzahl, Genauigkeit, Kosten usw.) im Zug / Test / gültigen Sets gegen …
In François Chollets Deep Learning with Python heißt es: Infolgedessen kann das Optimieren der Konfiguration des Modells basierend auf seiner Leistung im Validierungssatz schnell zu einer Überanpassung an den Validierungssatz führen, obwohl Ihr Modell niemals direkt darauf trainiert wird. Zentral für dieses Phänomen ist der Begriff der Informationslecks. Jedes Mal, …
Also versuche ich, mir neuronale Netze beizubringen (für Regressionsanwendungen, ohne Bilder von Katzen zu klassifizieren). Meine ersten Experimente waren das Trainieren eines Netzwerks zur Implementierung eines FIR-Filters und einer diskreten Fourier-Transformation (Training für "Vorher" - und "Nachher" -Signale), da dies beide lineare Operationen sind, die von einer einzelnen Schicht ohne …
Geschlossen . Diese Frage muss fokussierter sein . Derzeit werden keine Antworten akzeptiert. Möchten Sie diese Frage verbessern? Aktualisieren Sie die Frage so, dass sie sich nur auf ein Problem konzentriert, indem Sie diesen Beitrag bearbeiten . Geschlossen vor 2 Jahren . Ich bin neu im Bereich des maschinellen Lernens, …
In dem Artikel Deep Learning und das Prinzip des Informationsengpasses geben die Autoren in Abschnitt II A) Folgendes an: Einzelne Neuronen klassifizieren nur linear trennbare Eingaben, da sie nur Hyperebenen in ihrem Eingaberaum implementieren können . Hyperebenen können Daten optimal klassifizieren, wenn die Eingaben bedingt unabhängig sind.u=wh+bu=wh+bu = wh+b Um …
Beispiele: Ich habe einen Satz in der Stellenbeschreibung: "Java Senior Engineer in UK". Ich möchte ein Deep-Learning-Modell verwenden, um es als zwei Kategorien vorherzusagen: English und IT jobs. Wenn ich ein traditionelles Klassifizierungsmodell verwende, kann es nur 1 Etikett mit softmaxFunktion auf der letzten Ebene vorhersagen . Somit kann ich …
Wie interpretieren Sie eine Überlebenskurve aus dem Cox-Proportional-Hazard-Modell? Nehmen wir in diesem Spielzeugbeispiel an, wir haben ein Cox-Proportional-Hazard-Modell für ageVariablen in kidneyDaten und generieren die Überlebenskurve. library(survival) fit <- coxph(Surv(time, status)~age, data=kidney) plot(conf.int="none", survfit(fit)) grid() Welche Aussage ist zum Zeitpunkt zum Beispiel wahr? oder sind beide falsch?200200200 Statement 1: Wir …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.