Als «unbiased-estimator» getaggte Fragen

Bezieht sich auf einen Schätzer eines Populationsparameters, der im Durchschnitt "den wahren Wert erreicht". Das heißt, eine Funktion der beobachteten Daten ist ein unverzerrter Schätzer eines Parameters wenn E (\ hat {\ theta}) = \ theta . Das einfachste Beispiel für einen unvoreingenommenen Schätzer ist der Stichprobenmittelwert als Schätzer des Populationsmittelwerts. θ^θE.(θ^)=θ

3
Was ist der Unterschied zwischen einem konsistenten und einem unvoreingenommenen Schätzer?
Ich bin wirklich überrascht, dass das anscheinend noch niemand gefragt hat ... Bei der Diskussion von Schätzern werden häufig die Begriffe "konsistent" und "unvoreingenommen" verwendet. Meine Frage ist einfach: Was ist der Unterschied? Die genauen technischen Definitionen dieser Begriffe sind ziemlich kompliziert und es ist schwierig, ein intuitives Gefühl dafür …

8
Generieren Sie eine Zufallsvariable mit einer definierten Korrelation zu einer oder mehreren vorhandenen Variablen.
Für eine Simulationsstudie muss ich Zufallsvariablen generieren, die eine vorab festgelegte (Populations-) Korrelation zu einer vorhandenen Variablen .Y.YY Ich sah in die RPakete copulaund CDVineder Zufall multivariate Verteilungen mit einer bestimmten Abhängigkeitsstruktur erzeugen kann. Es ist jedoch nicht möglich, eine der resultierenden Variablen an eine vorhandene Variable zu binden. Anregungen …

5
Wie genau stimmten Statistiker darin überein, (n-1) als unverzerrten Schätzer für die Populationsvarianz ohne Simulation zu verwenden?
Die Formel zur Berechnung der Varianz hat im Nenner :(n−1)(n−1)(n-1) s2=∑Ni=1(xi−x¯)2n−1s2=∑i=1N(xi−x¯)2n−1s^2 = \frac{\sum_{i=1}^N (x_i - \bar{x})^2}{n-1} Ich habe mich immer gefragt, warum. Das Lesen und Anschauen einiger guter Videos über das "Warum" von scheint jedoch ein guter unverzerrter Schätzer der Populationsvarianz zu sein. Während die Populationsvarianz unterschätzt und überschätzt.n ( …

2
Intuition dahinter, warum Steins Paradoxon nur in Dimensionen gilt
Steins Beispiel zeigt, dass die maximale Wahrscheinlichkeitsschätzung von normalverteilten Variablen mit den Mitteln und Varianzen (unter einer Quadratverlustfunktion) unzulässig ist, wenn f . Einen guten Beweis finden Sie im ersten Kapitel von Large-Scale Inference: Empirische Bayes-Methoden zur Abschätzung, Prüfung und Vorhersage von Bradley Effron.μ 1 , … , μ n …

3
Interpretation des log transformierten Prädiktors und / oder der Antwort
Ich frage mich, ob es einen Unterschied in der Interpretation macht, ob nur die abhängigen, sowohl die abhängigen als auch die unabhängigen Variablen oder nur die unabhängigen Variablen log-transformiert werden. Betrachten Sie den Fall von log(DV) = Intercept + B1*IV + Error Ich kann die IV als prozentuale Erhöhung interpretieren, …
46 regression  data-transformation  interpretation  regression-coefficients  logarithm  r  dataset  stata  hypothesis-testing  contingency-tables  hypothesis-testing  statistical-significance  standard-deviation  unbiased-estimator  t-distribution  r  functional-data-analysis  maximum-likelihood  bootstrap  regression  change-point  regression  sas  hypothesis-testing  bayesian  randomness  predictive-models  nonparametric  terminology  parametric  correlation  effect-size  loess  mean  pdf  quantile-function  bioinformatics  regression  terminology  r-squared  pdf  maximum  multivariate-analysis  references  data-visualization  r  pca  r  mixed-model  lme4-nlme  distributions  probability  bayesian  prior  anova  chi-squared  binomial  generalized-linear-model  anova  repeated-measures  t-test  post-hoc  clustering  variance  probability  hypothesis-testing  references  binomial  profile-likelihood  self-study  excel  data-transformation  skewness  distributions  statistical-significance  econometrics  spatial  r  regression  anova  spss  linear-model 



6
Warum sollte der Nenner des Kovarianzschätzers nicht n-2 statt n-1 sein?
Der Nenner des (unverzerrten) Varianzschätzers ist n−1n−1n-1 da nnn Beobachtungen vorliegen und nur ein Parameter geschätzt wird. V(X)=∑ni=1(Xi−X¯¯¯¯)2n−1V(X)=∑i=1n(Xi−X¯)2n−1 \mathbb{V}\left(X\right)=\frac{\sum_{i=1}^{n}\left(X_{i}-\overline{X}\right)^{2}}{n-1} Aus dem gleichen Grund frage ich mich, warum der Nenner der Kovarianz nicht n−2n−2n-2 wenn zwei Parameter geschätzt werden. Cov(X,Y)=∑ni=1(Xi−X¯¯¯¯)(Yi−Y¯¯¯¯)n−1Cov(X,Y)=∑i=1n(Xi−X¯)(Yi−Y¯)n−1 \mathbb{Cov}\left(X, Y\right)=\frac{\sum_{i=1}^{n}\left(X_{i}-\overline{X}\right)\left(Y_{i}-\overline{Y}\right)}{n-1}

3
Warum gibt es einen Unterschied zwischen der manuellen Berechnung eines Konfidenzintervalls für eine logistische Regression von 95% und der Verwendung der Funktion confint () in R?
Sehr geehrte Damen und Herren, mir ist etwas Merkwürdiges aufgefallen, das ich Ihnen nicht erklären kann. Zusammenfassend lässt sich sagen, dass der manuelle Ansatz zur Berechnung eines Konfidenzintervalls in einem logistischen Regressionsmodell und die R-Funktion confint()unterschiedliche Ergebnisse liefern. Ich habe die angewandte logistische Regression von Hosmer & Lemeshow (2. Auflage) …
34 r  regression  logistic  confidence-interval  profile-likelihood  correlation  mcmc  error  mixture  measurement  data-augmentation  r  logistic  goodness-of-fit  r  time-series  exponential  descriptive-statistics  average  expected-value  data-visualization  anova  teaching  hypothesis-testing  multivariate-analysis  r  r  mixed-model  clustering  categorical-data  unsupervised-learning  r  logistic  anova  binomial  estimation  variance  expected-value  r  r  anova  mixed-model  multiple-comparisons  repeated-measures  project-management  r  poisson-distribution  control-chart  project-management  regression  residuals  r  distributions  data-visualization  r  unbiased-estimator  kurtosis  expected-value  regression  spss  meta-analysis  r  censoring  regression  classification  data-mining  mixture 

3
R: Zufällige Gesamtstruktur, die NaN / Inf im Fehler "fremder Funktionsaufruf" trotz fehlender NaNs im Datensatz auslöst [geschlossen]
Ich verwende Caret, um eine kreuzvalidierte zufällige Gesamtstruktur über ein Dataset auszuführen. Die Y-Variable ist ein Faktor. In meinem Datensatz befinden sich keine NaNs, Infs oder NAs. Allerdings bekomme ich, wenn ich den zufälligen Wald laufen lasse Error in randomForest.default(m, y, ...) : NA/NaN/Inf in foreign function call (arg 1) …

1
Können Freiheitsgrade eine nicht ganzzahlige Zahl sein?
Wenn ich GAM verwende, erhalte ich einen DF-Rest von (letzte Zeile im Code). Was bedeutet das? Über das GAM-Beispiel hinausgehend: Kann die Anzahl der Freiheitsgrade im Allgemeinen eine nicht ganzzahlige Zahl sein?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) Deviance Residuals: Min 1Q Median …
27 r  degrees-of-freedom  gam  machine-learning  pca  lasso  probability  self-study  bootstrap  expected-value  regression  machine-learning  linear-model  probability  simulation  random-generation  machine-learning  distributions  svm  libsvm  classification  pca  multivariate-analysis  feature-selection  archaeology  r  regression  dataset  simulation  r  regression  time-series  forecasting  predictive-models  r  mean  sem  lavaan  machine-learning  regularization  regression  conv-neural-network  convolution  classification  deep-learning  conv-neural-network  regression  categorical-data  econometrics  r  confirmatory-factor  scale-invariance  self-study  unbiased-estimator  mse  regression  residuals  sampling  random-variable  sample  probability  random-variable  convergence  r  survival  weibull  references  autocorrelation  hypothesis-testing  distributions  correlation  regression  statistical-significance  regression-coefficients  univariate  categorical-data  chi-squared  regression  machine-learning  multiple-regression  categorical-data  linear-model  pca  factor-analysis  factor-rotation  classification  scikit-learn  logistic  p-value  regression  panel-data  multilevel-analysis  variance  bootstrap  bias  probability  r  distributions  interquartile  time-series  hypothesis-testing  normal-distribution  normality-assumption  kurtosis  arima  panel-data  stata  clustered-standard-errors  machine-learning  optimization  lasso  multivariate-analysis  ancova  machine-learning  cross-validation 


4
Ist der unvoreingenommene Maximum-Likelihood-Schätzer immer der beste unvoreingenommene Schätzer?
Ich weiß, dass es sich bei regelmäßigen Problemen um den Maximum Likelihood Estimator (MLE) handeln muss, wenn wir einen besten regelmäßigen unverzerrten Schätzer haben. Aber im Allgemeinen, wenn wir eine unvoreingenommene MLE haben, wäre es auch der beste unvoreingenommene Schätzer (oder sollte ich es UMVUE nennen, solange es die kleinste …

2
Shrunken
In meinem Kopf gab es einige Verwirrung über zwei Arten von Schätzern für den Populationswert des Pearson-Korrelationskoeffizienten. A. Fisher (1915) zeigte, dass für bivariate Normalpopulation empirisch ein negativ verzerrter Schätzer von , obwohl die Verzerrung nur für kleine Stichprobengrößen ( ) von praktisch beträchtlichem Wert sein kann . Stichprobe unterschätzt …

2
Vorspannungskorrektur in der gewichteten Varianz
Für die ungewichtete Varianz existiert die vorspannungskorrigierte Stichprobenvarianz, wenn der Mittelwert aus denselben Daten geschätzt wurde: Var(X):=1Var ( X) : = 1n∑ich( xich- μ )2Var(X): =1n∑ich(xich-μ)2\text{Var}(X):=\frac{1}{n}\sum_i(x_i - \mu)^2Var ( X) : = 1n - 1∑ich( xich- E[ X] )2Var(X): =1n-1∑ich(xich-E[X])2\text{Var}(X):=\frac{1}{n-1}\sum_i(x_i - E[X])^2 Ich beschäftige mich mit dem gewichteten Mittelwert und …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.