Die Parameter eines Regressionsmodells. Am häufigsten die Werte, mit denen die unabhängigen Variablen multipliziert werden, um den vorhergesagten Wert der abhängigen Variablen zu erhalten.
Gilt es jemals, eine bidirektionale Interaktion in ein Modell aufzunehmen, ohne die Haupteffekte einzubeziehen? Was ist, wenn es bei Ihrer Hypothese nur um die Interaktion geht, müssen Sie dann noch die Haupteffekte berücksichtigen?
Ich frage mich, ob es einen Unterschied in der Interpretation macht, ob nur die abhängigen, sowohl die abhängigen als auch die unabhängigen Variablen oder nur die unabhängigen Variablen log-transformiert werden. Betrachten Sie den Fall von log(DV) = Intercept + B1*IV + Error Ich kann die IV als prozentuale Erhöhung interpretieren, …
Bei der einfachen linearen Regression ist , wobei . Ich habe den Schätzer abgeleitet: wobei und die Beispielmittel für und .y=β0+β1x+uy=β0+β1x+uy = \beta_0 + \beta_1 x + uu∼iidN(0,σ2)u∼iidN(0,σ2)u \sim iid\;\mathcal N(0,\sigma^2)β1^=∑i(xi−x¯)(yi−y¯)∑i(xi−x¯)2 ,β1^=∑i(xi−x¯)(yi−y¯)∑i(xi−x¯)2 , \hat{\beta_1} = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{\sum_i (x_i - \bar{x})^2}\ , x¯x¯\bar{x}y¯y¯\bar{y}xxxyyy Jetzt möchte ich die …
Ich versuche, ein Polynom zweiter Ordnung zu erstellen, das zu einigen meiner Daten passt. Angenommen, ich zeichne diese Übereinstimmung mit ggplot(): ggplot(data, aes(foo, bar)) + geom_point() + geom_smooth(method="lm", formula=y~poly(x, 2)) Ich bekomme: Eine Passung zweiter Ordnung funktioniert also ganz gut. Ich berechne es mit R: summary(lm(data$bar ~ poly(data$foo, 2))) Und …
Ich weiß nicht einmal, ob diese Frage sinnvoll ist, aber was ist der Unterschied zwischen multipler Regression und partieller Korrelation (abgesehen von den offensichtlichen Unterschieden zwischen Korrelation und Regression, die ich nicht anstrebe)? Ich möchte Folgendes herausfinden: Ich habe zwei unabhängige Variablen ( x1x1x_1 , ) und eine abhängige Variable …
Ich verwende Caret, um eine kreuzvalidierte zufällige Gesamtstruktur über ein Dataset auszuführen. Die Y-Variable ist ein Faktor. In meinem Datensatz befinden sich keine NaNs, Infs oder NAs. Allerdings bekomme ich, wenn ich den zufälligen Wald laufen lasse Error in randomForest.default(m, y, ...) : NA/NaN/Inf in foreign function call (arg 1) …
Ich bin gerade auf diese Arbeit gestoßen , in der beschrieben wird, wie die Wiederholbarkeit (auch bekannt als Zuverlässigkeit, auch bekannt als Intraclass-Korrelation) einer Messung über Mixed-Effects-Modellierung berechnet wird. Der R-Code wäre: #fit the model fit = lmer(dv~(1|unit),data=my_data) #obtain the variance estimates vc = VarCorr(fit) residual_var = attr(vc,'sc')^2 intercept_var = …
Wenn ich GAM verwende, erhalte ich einen DF-Rest von (letzte Zeile im Code). Was bedeutet das? Über das GAM-Beispiel hinausgehend: Kann die Anzahl der Freiheitsgrade im Allgemeinen eine nicht ganzzahlige Zahl sein?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) Deviance Residuals: Min 1Q Median …
Zuerst dachte ich, dass die Reihenfolge keine Rolle spielt, aber dann las ich über den Gramm-Schmidt-Orthogonalisierungsprozess zur Berechnung mehrerer Regressionskoeffizienten, und jetzt habe ich Bedenken. Je später eine erklärende Variable unter den anderen Variablen indiziert wird, desto kleiner ist nach dem Gramm-Schmidt-Verfahren ihr Restvektor, weil die Restvektoren der vorhergehenden Variablen …
Für eine einfache lineare Regression kann der Regressionskoeffizient direkt aus der Varianz-Kovarianz-Matrix berechnet werden , und zwar durch wobei der Index der abhängigen Variablen und der Index der erklärenden Variablen ist.C d , eCCC deCd,eCe,eCd,eCe,e C_{d, e}\over C_{e,e} dddeee Wenn man nur die Kovarianzmatrix hat, ist es möglich, die Koeffizienten …
Wenn wir mehrere Regressionen durchführen und sagen, dass wir die durchschnittliche Änderung in der Variablen auf eine Änderung in einer Variablen untersuchen und alle anderen Variablen konstant halten, bei welchen Werten halten wir die anderen Variablen konstant? Ihr gemeiner? Null? Irgendein Wert?yyyxxx Ich bin geneigt zu glauben, dass es irgendeinen …
Ich habe mir das Boot-Paket in R angeschaut und obwohl ich eine Reihe guter Grundlagen für die Verwendung gefunden habe, muss ich noch etwas finden, das genau beschreibt, was "hinter den Kulissen" passiert. In diesem Beispiel wird beispielsweise gezeigt , wie Standard-Regressionskoeffizienten als Ausgangspunkt für eine Bootstrap-Regression verwendet werden. Es …
Könnte mir jemand raten, wie ich die Schätzungen aus einer logistischen Regression mithilfe eines Cloglog-Links interpretieren kann? Ich habe folgendes Modell eingebaut lme4: glm(cbind(dead, live) ~ time + factor(temp) * biomass, data=mussel, family=binomial(link=cloglog)) Beispielsweise beträgt die geschätzte Zeit 0,015. Ist es richtig zu sagen, dass die Wahrscheinlichkeit der Sterblichkeit pro …
Ich frage mich, wie genau die Beziehung zwischen partiellem R2R2R^2 und Koeffizienten in einem linearen Modell ist und ob ich nur einen oder beide verwenden sollte, um die Bedeutung und den Einfluss von Faktoren zu veranschaulichen. Soweit ich weiß, summaryerhalte ich mit Schätzungen der Koeffizienten und mit anovader Summe der …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.