Es gibt verschiedene "Varianten" oder Formen des Bootstraps (z. B. nicht parametrisch, parametrisch, Restresampling und viele mehr). Der Bootstrap im Beispiel wird als nicht parametrischer Bootstrap oder Resampling von Groß- und Kleinschreibung bezeichnet (siehe hier , hier , hier und hier für Anwendungen in der Regression). Die Grundidee ist, dass Sie Ihre Probe als Population behandeln und wiederholt neue Proben mit Ersatz daraus ziehen . Alle ursprünglichen Beobachtungen haben die gleiche Wahrscheinlichkeit, in die neue Stichprobe aufgenommen zu werden. Anschließend berechnen und speichern Sie die interessierende (n) Statistik (en). Dies kann der Mittelwert, der Median oder der Regressionskoeffizient unter Verwendung der neu gezogenen Stichprobe sein. Dies wird mal wiederholt . In jeder Iteration werden einige Beobachtungen aus Ihrer Originalprobe mehrmals gezogen, während einige Beobachtungen möglicherweise überhaupt nicht gezogen werden. Nach n Iterationen haben Sie n Bootstrap-Schätzungen der interessierenden Statistik (en) gespeichert (z. B. wenn n = 1000 und die interessierende Statistik der Mittelwert ist, haben Sie 1000 Bootstrap-Schätzungen des Mittelwerts). Zuletzt werden zusammenfassende Statistiken wie der Mittelwert, der Median und die Standardabweichung der n Bootstrap-Schätzungen berechnet.nnnn = 1000n
Bootstrapping wird häufig verwendet für:
- Berechnung der Konfidenzintervalle (und Schätzung der Standardfehler)
- Schätzung der Verzerrung der Punktschätzungen
Es gibt verschiedene Methoden zum Berechnen von Konfidenzintervallen basierend auf den Bootstrap-Beispielen ( dieses Dokument enthält Erläuterungen und Anleitungen). Eine sehr einfache Methode zur Berechnung eines 95% -Konfidenzintervalls besteht darin, nur die empirischen 2,5- und 97,5-Perzentile der Bootstrap-Beispiele zu berechnen (dieses Intervall wird als Bootstrap-Perzentilintervall bezeichnet; siehe Code unten). Die einfache Perzentilintervallmethode wird in der Praxis nur selten verwendet, da es bessere Methoden gibt, wie zum Beispiel das vorspannungskorrigierte und beschleunigte Bootstrap (BCa). BCa-Intervalle passen sich sowohl der Vorspannung als auch der Neigung in der Bootstrap-Verteilung an.
n
Lassen Sie uns das Beispiel von der Website wiederholen, aber unsere eigene Schleife verwenden, die die oben skizzierten Ideen einbezieht (wiederholt mit Ersetzung zeichnen):
#-----------------------------------------------------------------------------
# Load packages
#-----------------------------------------------------------------------------
require(ggplot2)
require(pscl)
require(MASS)
require(boot)
#-----------------------------------------------------------------------------
# Load data
#-----------------------------------------------------------------------------
zinb <- read.csv("http://www.ats.ucla.edu/stat/data/fish.csv")
zinb <- within(zinb, {
nofish <- factor(nofish)
livebait <- factor(livebait)
camper <- factor(camper)
})
#-----------------------------------------------------------------------------
# Calculate zero-inflated regression
#-----------------------------------------------------------------------------
m1 <- zeroinfl(count ~ child + camper | persons, data = zinb,
dist = "negbin", EM = TRUE)
#-----------------------------------------------------------------------------
# Store the original regression coefficients
#-----------------------------------------------------------------------------
original.estimates <- as.vector(t(do.call(rbind, coef(summary(m1)))[, 1:2]))
#-----------------------------------------------------------------------------
# Set the number of replications
#-----------------------------------------------------------------------------
n.sim <- 2000
#-----------------------------------------------------------------------------
# Set up a matrix to store the results
#-----------------------------------------------------------------------------
store.matrix <- matrix(NA, nrow=n.sim, ncol=12)
#-----------------------------------------------------------------------------
# The loop
#-----------------------------------------------------------------------------
set.seed(123)
for(i in 1:n.sim) {
#-----------------------------------------------------------------------------
# Draw the observations WITH replacement
#-----------------------------------------------------------------------------
data.new <- zinb[sample(1:dim(zinb)[1], dim(zinb)[1], replace=TRUE),]
#-----------------------------------------------------------------------------
# Calculate the model with this "new" data
#-----------------------------------------------------------------------------
m <- zeroinfl(count ~ child + camper | persons,
data = data.new, dist = "negbin",
start = list(count = c(1.3711, -1.5152, 0.879),
zero = c(1.6028, -1.6663)))
#-----------------------------------------------------------------------------
# Store the results
#-----------------------------------------------------------------------------
store.matrix[i, ] <- as.vector(t(do.call(rbind, coef(summary(m)))[, 1:2]))
}
#-----------------------------------------------------------------------------
# Save the means, medians and SDs of the bootstrapped statistics
#-----------------------------------------------------------------------------
boot.means <- colMeans(store.matrix, na.rm=T)
boot.medians <- apply(store.matrix,2,median, na.rm=T)
boot.sds <- apply(store.matrix,2,sd, na.rm=T)
#-----------------------------------------------------------------------------
# The bootstrap bias is the difference between the mean bootstrap estimates
# and the original estimates
#-----------------------------------------------------------------------------
boot.bias <- colMeans(store.matrix, na.rm=T) - original.estimates
#-----------------------------------------------------------------------------
# Basic bootstrap CIs based on the empirical quantiles
#-----------------------------------------------------------------------------
conf.mat <- matrix(apply(store.matrix, 2 ,quantile, c(0.025, 0.975), na.rm=T),
ncol=2, byrow=TRUE)
colnames(conf.mat) <- c("95%-CI Lower", "95%-CI Upper")
Und hier ist unsere Übersichtstabelle:
#-----------------------------------------------------------------------------
# Set up summary data frame
#-----------------------------------------------------------------------------
summary.frame <- data.frame(mean=boot.means, median=boot.medians,
sd=boot.sds, bias=boot.bias, "CI_lower"=conf.mat[,1], "CI_upper"=conf.mat[,2])
summary.frame
mean median sd bias CI_lower CI_upper
1 1.2998 1.3013 0.39674 -0.0712912 0.51960 2.0605
2 0.2527 0.2486 0.03208 -0.0034461 0.19898 0.3229
3 -1.5662 -1.5572 0.26220 -0.0509239 -2.12900 -1.0920
4 0.2005 0.1986 0.01949 0.0049019 0.16744 0.2418
5 0.9544 0.9252 0.48915 0.0753405 0.03493 1.9025
6 0.2702 0.2688 0.02043 0.0009583 0.23272 0.3137
7 -0.8997 -0.9082 0.22174 0.0856793 -1.30664 -0.4380
8 0.1789 0.1781 0.01667 0.0029513 0.14494 0.2140
9 2.0683 1.7719 1.59102 0.4654898 0.44150 8.0471
10 4.0209 0.8270 13.23434 3.1845710 0.58114 57.6417
11 -2.0969 -1.6717 1.56311 -0.4306844 -8.43440 -1.1156
12 3.8660 0.6435 13.27525 3.1870642 0.33631 57.6062
Einige Erklärungen
- Die Differenz zwischen dem Mittelwert der Bootstrap-Schätzungen und den ursprünglichen Schätzungen wird als "Bias" in der Ausgabe von bezeichnet
boot
- Was die Ausgabe von
boot
Aufrufen "Standardfehler" ist die Standardabweichung der Bootstrap-Schätzungen
Vergleichen Sie es mit der Ausgabe von boot
:
#-----------------------------------------------------------------------------
# Compare with boot output and confidence intervals
#-----------------------------------------------------------------------------
set.seed(10)
res <- boot(zinb, f, R = 2000, parallel = "snow", ncpus = 4)
res
Bootstrap Statistics :
original bias std. error
t1* 1.3710504 -0.076735010 0.39842905
t2* 0.2561136 -0.003127401 0.03172301
t3* -1.5152609 -0.064110745 0.26554358
t4* 0.1955916 0.005819378 0.01933571
t5* 0.8790522 0.083866901 0.49476780
t6* 0.2692734 0.001475496 0.01957823
t7* -0.9853566 0.083186595 0.22384444
t8* 0.1759504 0.002507872 0.01648298
t9* 1.6031354 0.482973831 1.58603356
t10* 0.8365225 3.240981223 13.86307093
t11* -1.6665917 -0.453059768 1.55143344
t12* 0.6793077 3.247826469 13.90167954
perc.cis <- matrix(NA, nrow=dim(res$t)[2], ncol=2)
for( i in 1:dim(res$t)[2] ) {
perc.cis[i,] <- boot.ci(res, conf=0.95, type="perc", index=i)$percent[4:5]
}
colnames(perc.cis) <- c("95%-CI Lower", "95%-CI Upper")
perc.cis
95%-CI Lower 95%-CI Upper
[1,] 0.52240 2.1035
[2,] 0.19984 0.3220
[3,] -2.12820 -1.1012
[4,] 0.16754 0.2430
[5,] 0.04817 1.9084
[6,] 0.23401 0.3124
[7,] -1.29964 -0.4314
[8,] 0.14517 0.2149
[9,] 0.29993 8.0463
[10,] 0.57248 56.6710
[11,] -8.64798 -1.1088
[12,] 0.33048 56.6702
#-----------------------------------------------------------------------------
# Our summary table
#-----------------------------------------------------------------------------
summary.frame
mean median sd bias CI_lower CI_upper
1 1.2998 1.3013 0.39674 -0.0712912 0.51960 2.0605
2 0.2527 0.2486 0.03208 -0.0034461 0.19898 0.3229
3 -1.5662 -1.5572 0.26220 -0.0509239 -2.12900 -1.0920
4 0.2005 0.1986 0.01949 0.0049019 0.16744 0.2418
5 0.9544 0.9252 0.48915 0.0753405 0.03493 1.9025
6 0.2702 0.2688 0.02043 0.0009583 0.23272 0.3137
7 -0.8997 -0.9082 0.22174 0.0856793 -1.30664 -0.4380
8 0.1789 0.1781 0.01667 0.0029513 0.14494 0.2140
9 2.0683 1.7719 1.59102 0.4654898 0.44150 8.0471
10 4.0209 0.8270 13.23434 3.1845710 0.58114 57.6417
11 -2.0969 -1.6717 1.56311 -0.4306844 -8.43440 -1.1156
12 3.8660 0.6435 13.27525 3.1870642 0.33631 57.6062
Vergleichen Sie die Spalten "bias" und "std. Error" mit der Spalte "sd" unserer eigenen Übersichtstabelle. Unsere 95% -Konfidenzintervalle sind den Konfidenzintervallen, die boot.ci
mit der Perzentilmethode berechnet wurden , sehr ähnlich (jedoch nicht alle: Betrachten Sie die untere Grenze des Parameters mit Index 9).