Als «binomial» getaggte Fragen

Die Binomialverteilung gibt die Häufigkeit von "Erfolgen" in einer festen Anzahl unabhängiger "Versuche" an. Verwenden Sie dieses Tag für Fragen zu Daten, die möglicherweise binomial verteilt sind, oder für Fragen zur Theorie dieser Verteilung.

4
Ist das Ergebnis einer Prüfung ein Binomial?
Hier ist eine einfache Statistikfrage, die mir gestellt wurde. Ich bin mir nicht sicher, ob ich das verstehe. X = Anzahl der in einer Prüfung erworbenen Punkte (Multiple Choice und richtige Antwort sind ein Punkt). Ist X-Binomial verteilt? Die Antwort des Professors war: Ja, weil es nur richtige oder falsche …

4
Logistische Regression - Fehlerbedingung und deren Verteilung
Zu der Frage, ob in der logistischen Regression (und ihrer angenommenen Verteilung) ein Fehlerbegriff vorhanden ist, habe ich an verschiedenen Stellen gelesen, dass: Es existiert kein Fehlerbegriff der Fehlerterm hat eine Binomialverteilung (entsprechend der Verteilung der Antwortvariablen) Der Fehlerbegriff hat eine logistische Verteilung Kann das bitte jemand klären?

2
Was ist Quasi-Binomialverteilung (im Kontext von GLM)?
Ich hoffe, jemand kann einen intuitiven Überblick darüber geben, was Quasibinomialverteilung ist und was sie bewirkt. Diese Punkte interessieren mich besonders: Wie sich das Quasibinom von der Binomialverteilung unterscheidet. Wenn die Antwortvariable eine Proportion ist (Beispielwerte sind 0,23, 0,11, 0,78, 0,98), wird ein Quasibinomialmodell in R ausgeführt, ein Binomialmodell jedoch …


6
Schätzung des binomialen Konfidenzintervalls - warum ist es nicht symmetrisch?
Ich habe den folgenden r-Code verwendet, um die Konfidenzintervalle eines Binomialanteils zu schätzen, da ich verstehe, dass dies eine "Leistungsberechnung" ersetzt, wenn Empfänger-Betriebskennliniendesigns entworfen werden, bei denen die Erkennung von Krankheiten in einer Population untersucht wird. n ist 150, und wir glauben, dass die Krankheit in der Bevölkerung zu 25% …

1
Berechnung der Wiederholbarkeit von Effekten aus einem früheren Modell
Ich bin gerade auf diese Arbeit gestoßen , in der beschrieben wird, wie die Wiederholbarkeit (auch bekannt als Zuverlässigkeit, auch bekannt als Intraclass-Korrelation) einer Messung über Mixed-Effects-Modellierung berechnet wird. Der R-Code wäre: #fit the model fit = lmer(dv~(1|unit),data=my_data) #obtain the variance estimates vc = VarCorr(fit) residual_var = attr(vc,'sc')^2 intercept_var = …
28 mixed-model  reliability  intraclass-correlation  repeatability  spss  factor-analysis  survey  modeling  cross-validation  error  curve-fitting  mediation  correlation  clustering  sampling  machine-learning  probability  classification  metric  r  project-management  optimization  svm  python  dataset  quality-control  checking  clustering  distributions  anova  factor-analysis  exponential  poisson-distribution  generalized-linear-model  deviance  machine-learning  k-nearest-neighbour  r  hypothesis-testing  t-test  r  variance  levenes-test  bayesian  software  bayesian-network  regression  repeated-measures  least-squares  change-scores  variance  chi-squared  variance  nonlinear-regression  regression-coefficients  multiple-comparisons  p-value  r  statistical-significance  excel  sampling  sample  r  distributions  interpretation  goodness-of-fit  normality-assumption  probability  self-study  distributions  references  theory  time-series  clustering  econometrics  binomial  hypothesis-testing  variance  t-test  paired-comparisons  statistical-significance  ab-test  r  references  hypothesis-testing  t-test  normality-assumption  wilcoxon-mann-whitney  central-limit-theorem  t-test  data-visualization  interactive-visualization  goodness-of-fit 


4
Differenz zwischen Binomial-, Negativ-Binomial- und Poisson-Regression
Ich suche nach Informationen über den Unterschied zwischen Binomial-, Negativ-Binomial- und Poisson-Regression und für welche Situationen sind diese Regressionen am besten geeignet. Gibt es Tests, die ich in SPSS durchführen kann, um festzustellen, welche dieser Regressionen für meine Situation am besten geeignet ist? Wie führe ich in SPSS ein Poisson- …


4
Exakter Binomialtest mit zwei Stichprobenanteilen in R (und einigen seltsamen p-Werten)
Ich versuche die folgende Frage zu lösen: Spieler A hat 17 von 25 Spielen gewonnen, während Spieler B 8 von 20 Spielen gewonnen hat. Gibt es einen signifikanten Unterschied zwischen beiden Verhältnissen? Das, was in R zu tun ist, ist das Folgende: > prop.test(c(17,8),c(25,20),correct=FALSE) 2-sample test for equality of proportions …



4
Wie projiziert man einen neuen Vektor auf den PCA-Raum?
Nach der Durchführung der Hauptkomponentenanalyse (PCA) möchte ich einen neuen Vektor auf den PCA-Raum projizieren (dh seine Koordinaten im PCA-Koordinatensystem finden). Ich habe PCA in R-Sprache mit berechnet prcomp. Jetzt sollte ich meinen Vektor mit der PCA-Rotationsmatrix multiplizieren können. Sollen die Hauptkomponenten in dieser Matrix in Zeilen oder Spalten angeordnet …
21 r  pca  r  variance  heteroscedasticity  misspecification  distributions  time-series  data-visualization  modeling  histogram  kolmogorov-smirnov  negative-binomial  likelihood-ratio  econometrics  panel-data  categorical-data  scales  survey  distributions  pdf  histogram  correlation  algorithms  r  gpu  parallel-computing  approximation  mean  median  references  sample-size  normality-assumption  central-limit-theorem  rule-of-thumb  confidence-interval  estimation  mixed-model  psychometrics  random-effects-model  hypothesis-testing  sample-size  dataset  large-data  regression  standard-deviation  variance  approximation  hypothesis-testing  variance  central-limit-theorem  kernel-trick  kernel-smoothing  error  sampling  hypothesis-testing  normality-assumption  philosophical  confidence-interval  modeling  model-selection  experiment-design  hypothesis-testing  statistical-significance  power  asymptotics  information-retrieval  anova  multiple-comparisons  ancova  classification  clustering  factor-analysis  psychometrics  r  sampling  expectation-maximization  markov-process  r  data-visualization  correlation  regression  statistical-significance  degrees-of-freedom  experiment-design  r  regression  curve-fitting  change-point  loess  machine-learning  classification  self-study  monte-carlo  markov-process  references  mathematical-statistics  data-visualization  python  cart  boosting  regression  classification  robust  cart  survey  binomial  psychometrics  likert  psychology  asymptotics  multinomial 


4
Was sind die korrekten Werte für Präzision und Rückruf in Randfällen?
Präzision ist definiert als: p = true positives / (true positives + false positives) Ist es richtig, dass sich die Genauigkeit 1 nähert true positivesund false positivessich 0 nähert? Gleiche Frage zum Rückruf: r = true positives / (true positives + false negatives) Ich führe derzeit einen statistischen Test durch, …
20 precision-recall  data-visualization  logarithm  references  r  networks  data-visualization  standard-deviation  probability  binomial  negative-binomial  r  categorical-data  aggregation  plyr  survival  python  regression  r  t-test  bayesian  logistic  data-transformation  confidence-interval  t-test  interpretation  distributions  data-visualization  pca  genetics  r  finance  maximum  probability  standard-deviation  probability  r  information-theory  references  computational-statistics  computing  references  engineering-statistics  t-test  hypothesis-testing  independence  definition  r  censoring  negative-binomial  poisson-distribution  variance  mixed-model  correlation  intraclass-correlation  aggregation  interpretation  effect-size  hypothesis-testing  goodness-of-fit  normality-assumption  small-sample  distributions  regression  normality-assumption  t-test  anova  confidence-interval  z-statistic  finance  hypothesis-testing  mean  model-selection  information-geometry  bayesian  frequentist  terminology  type-i-and-ii-errors  cross-validation  smoothing  splines  data-transformation  normality-assumption  variance-stabilizing  r  spss  stata  python  correlation  logistic  logit  link-function  regression  predictor  pca  factor-analysis  r  bayesian  maximum-likelihood  mcmc  conditional-probability  statistical-significance  chi-squared  proportion  estimation  error  shrinkage  application  steins-phenomenon 

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.