Als «wilcoxon-mann-whitney» getaggte Fragen

Der Wilcoxon-Rangsummentest, auch als Mann-Whitney-U-Test bekannt, ist ein nicht parametrischer Rangtest, um festzustellen, ob eine von zwei Proben größere Werte als die andere aufweist.

7
So wählen Sie zwischen t-Test und nicht parametrischem Test, z. B. Wilcoxon, in kleinen Stichproben
Bestimmte Hypothesen können mit dem Student- t- Test (möglicherweise mit der Welch-Korrektur für ungleiche Varianzen bei zwei Stichproben) oder mit einem nichtparametrischen Test wie dem Wilcoxon-Paired-Signed-Rank-Test, dem Wilcoxon-Mann-Whitney-U-Test, getestet werden. oder der Paired-Sign-Test. Wie können wir prinzipiell entscheiden, welcher Test am besten geeignet ist, insbesondere wenn die Stichprobengröße "klein" ist? …

5
Umgang mit hierarchischen / verschachtelten Daten beim maschinellen Lernen
Ich werde mein Problem mit einem Beispiel erklären. Angenommen, Sie möchten das Einkommen einer Person anhand einiger Attribute vorhersagen: {Alter, Geschlecht, Land, Region, Stadt}. Sie haben einen Trainingsdatensatz wie diesen train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", "M","F","M","F", "F","F","F","M")), Income=c(31,42,71,65, 50,51,101,38, 47,50,55,23)) …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 

1
Berechnung der Wiederholbarkeit von Effekten aus einem früheren Modell
Ich bin gerade auf diese Arbeit gestoßen , in der beschrieben wird, wie die Wiederholbarkeit (auch bekannt als Zuverlässigkeit, auch bekannt als Intraclass-Korrelation) einer Messung über Mixed-Effects-Modellierung berechnet wird. Der R-Code wäre: #fit the model fit = lmer(dv~(1|unit),data=my_data) #obtain the variance estimates vc = VarCorr(fit) residual_var = attr(vc,'sc')^2 intercept_var = …
28 mixed-model  reliability  intraclass-correlation  repeatability  spss  factor-analysis  survey  modeling  cross-validation  error  curve-fitting  mediation  correlation  clustering  sampling  machine-learning  probability  classification  metric  r  project-management  optimization  svm  python  dataset  quality-control  checking  clustering  distributions  anova  factor-analysis  exponential  poisson-distribution  generalized-linear-model  deviance  machine-learning  k-nearest-neighbour  r  hypothesis-testing  t-test  r  variance  levenes-test  bayesian  software  bayesian-network  regression  repeated-measures  least-squares  change-scores  variance  chi-squared  variance  nonlinear-regression  regression-coefficients  multiple-comparisons  p-value  r  statistical-significance  excel  sampling  sample  r  distributions  interpretation  goodness-of-fit  normality-assumption  probability  self-study  distributions  references  theory  time-series  clustering  econometrics  binomial  hypothesis-testing  variance  t-test  paired-comparisons  statistical-significance  ab-test  r  references  hypothesis-testing  t-test  normality-assumption  wilcoxon-mann-whitney  central-limit-theorem  t-test  data-visualization  interactive-visualization  goodness-of-fit 



2
Unterschied zwischen dem Wilcoxon Rank Sum Test und dem Wilcoxon Signed Rank Test
Ich habe mich gefragt, was der theoretische Unterschied zwischen dem Wilcoxon-Rank-Summen-Test und dem Wilcoxon-Signed-Rank-Test unter Verwendung von Beobachtungspaaren ist. Ich weiß, dass der Wilcoxon-Rang-Summen-Test eine unterschiedliche Anzahl von Beobachtungen in zwei verschiedenen Stichproben zulässt, während der Signed-Rank-Test für gepaarte Stichproben dies nicht zulässt, obwohl beide meiner Meinung nach gleich zu …



1
Nicht parametrischer Test, wenn zwei Proben aus derselben Verteilung gezogen wurden
Ich möchte die Hypothese testen, dass zwei Stichproben aus derselben Grundgesamtheit stammen, ohne Annahmen über die Verteilung der Stichproben oder der Grundgesamtheit zu treffen. Wie soll ich das machen? Aus Wikipedia ist mein Eindruck, dass der Mann Whitney U-Test geeignet sein sollte, aber er scheint in der Praxis nicht für …

2
Wie kann man auf Unterschiede zwischen zwei Gruppen testen, wenn die Daten nicht normal verteilt sind?
Ich werde alle biologischen Details und Experimente eliminieren und nur das vorliegende Problem und das, was ich statistisch getan habe, zitieren. Ich würde gerne wissen, ob es richtig ist und wenn nicht, wie es weitergeht. Wenn die Daten (oder meine Erklärung) nicht klar genug sind, werde ich versuchen, sie durch …

1
Post-hoc-Tests nach Kruskal-Wallis: Dunn-Test oder Bonferroni-korrigierte Mann-Whitney-Tests?
Ich habe eine nicht-Gaußsche verteilte Variable und muss prüfen, ob es signifikante Unterschiede zwischen den Werten dieser Variablen in 5 verschiedenen Gruppen gibt. Ich habe eine einseitige Kruskal-Wallis-Varianzanalyse durchgeführt (die sich als signifikant erwies) und danach musste ich prüfen, welche Gruppen signifikant unterschiedlich waren. Da die Gruppen irgendwie sortiert sind …


4
Die Maschinengenauigkeit zur Steigerung des Gradienten nimmt mit zunehmender Anzahl von Iterationen ab
Ich experimentiere mit dem Algorithmus der Gradientenverstärkungsmaschine über das caretPaket in R. Unter Verwendung eines kleinen Datensatzes für Hochschulzulassungen habe ich den folgenden Code ausgeführt: library(caret) ### Load admissions dataset. ### mydata <- read.csv("http://www.ats.ucla.edu/stat/data/binary.csv") ### Create yes/no levels for admission. ### mydata$admit_factor[mydata$admit==0] <- "no" mydata$admit_factor[mydata$admit==1] <- "yes" ### Gradient boosting …
15 machine-learning  caret  boosting  gbm  hypothesis-testing  t-test  panel-data  psychometrics  intraclass-correlation  generalized-linear-model  categorical-data  binomial  model  intercept  causality  cross-correlation  distributions  ranks  p-value  z-test  sign-test  time-series  references  terminology  cross-correlation  definition  probability  distributions  beta-distribution  inverse-gamma  missing-data  paired-comparisons  paired-data  clustered-standard-errors  cluster-sample  time-series  arima  logistic  binary-data  odds-ratio  medicine  hypothesis-testing  wilcoxon-mann-whitney  unsupervised-learning  hierarchical-clustering  neural-networks  train  clustering  k-means  regression  ordinal-data  change-scores  machine-learning  experiment-design  roc  precision-recall  auc  stata  multilevel-analysis  regression  fitting  nonlinear  jmp  r  data-visualization  gam  gamm4  r  lme4-nlme  many-categories  regression  causality  instrumental-variables  endogeneity  controlling-for-a-variable 

1
Was ist die Intuition hinter austauschbaren Proben unter der Nullhypothese?
Permutationstests (auch Randomisierungstest, Re-Randomisierungstest oder exakter Test genannt) sind sehr nützlich und nützlich, wenn die zum Beispiel erforderliche Annahme einer Normalverteilung t-testnicht erfüllt ist und wenn die Transformation der Werte durch Rangfolge der Werte erfolgt Ein nicht parametrischer Test Mann-Whitney-U-testwürde dazu führen, dass mehr Informationen verloren gehen. Eine einzige Annahme, …
15 hypothesis-testing  permutation-test  exchangeability  r  statistical-significance  loess  data-visualization  normal-distribution  pdf  ggplot2  kernel-smoothing  probability  self-study  expected-value  normal-distribution  prior  correlation  time-series  regression  heteroscedasticity  estimation  estimators  fisher-information  data-visualization  repeated-measures  binary-data  panel-data  mathematical-statistics  coefficient-of-variation  normal-distribution  order-statistics  regression  machine-learning  one-class  probability  estimators  forecasting  prediction  validation  finance  measurement-error  variance  mean  spatial  monte-carlo  data-visualization  boxplot  sampling  uniform  chi-squared  goodness-of-fit  probability  mixture  theory  gaussian-mixture  regression  statistical-significance  p-value  bootstrap  regression  multicollinearity  correlation  r  poisson-distribution  survival  regression  categorical-data  ordinal-data  ordered-logit  regression  interaction  time-series  machine-learning  forecasting  cross-validation  binomial  multiple-comparisons  simulation  false-discovery-rate  r  clustering  frequency  wilcoxon-mann-whitney  wilcoxon-signed-rank  r  svm  t-test  missing-data  excel  r  numerical-integration  r  random-variable  lme4-nlme  mixed-model  weighted-regression  power-law  errors-in-variables  machine-learning  classification  entropy  information-theory  mutual-information 

2
Warum ist der Mann-Whitney-U-Test signifikant, wenn die Mediane gleich sind?
Ich habe Ergebnisse aus einem Mann-Whitney-Rangtest erhalten, die ich nicht verstehe. Der Median der 2 Populationen ist identisch (6.9). Die oberen und unteren Quantile jeder Population sind: 6,64 & 7,2 6,60 & 7,1 Der aus dem Vergleich dieser Populationen resultierende p-Wert beträgt 0,007. Wie können diese Populationen signifikant unterschiedlich sein? …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.