Als «dimensionality-reduction» getaggte Fragen

Bezieht sich auf Techniken zum Reduzieren einer großen Anzahl von Variablen oder Dimensionen, die von Daten überspannt werden, auf eine kleinere Anzahl von Dimensionen, während so viele Informationen über die Daten wie möglich erhalten bleiben. Zu den wichtigsten Methoden gehören PCA, MDS, Isomap usw. Die beiden Hauptunterklassen von Techniken: Merkmalsextraktion und Merkmalsauswahl.

1
Wie sind die Ergebnisse der Dimensionsreduktion / mehrdimensionalen Skalierung zu interpretieren?
Ich habe sowohl eine SVD-Zerlegung als auch eine mehrdimensionale Skalierung einer 6-dimensionalen Datenmatrix durchgeführt, um die Struktur der Daten besser zu verstehen. Leider sind alle Singularwerte in derselben Größenordnung, was bedeutet, dass die Dimensionalität der Daten tatsächlich 6 beträgt. Ich möchte jedoch die Werte der Singularvektoren interpretieren können. Zum Beispiel …


1
Codieren von kategorialen Merkmalen mit hoher Kardinalität (viele Kategorien), wenn sich die Merkmale in Bezug auf die Kardinalität stark unterscheiden
Ich habe Fragen zur Codierung kategorialer Features durchgesehen, konnte jedoch keine finden, die mein Problem diskutieren. Entschuldigung, wenn ich es verpasst habe. Nehmen wir an, wir haben einen Datensatz mit binären und nominalen Variablen von jeweils ungefähr gleicher Bedeutung. Die meisten Klassifizierer können sich nicht direkt mit kategorialen Typen befassen, …

3
Ein konkretes Beispiel ist die Durchführung einer SVD, um fehlende Werte zu unterstellen
Ich habe die großartigen Kommentare zum Umgang mit fehlenden Werten vor dem Anwenden von SVD gelesen, möchte aber anhand eines einfachen Beispiels wissen, wie dies funktioniert: Movie1 Movie2 Movie3 User1 5 4 User2 2 5 5 User3 3 4 User4 1 5 User5 5 1 5 Wenn ich in der …
8 r  missing-data  data-imputation  svd  sampling  matlab  mcmc  importance-sampling  predictive-models  prediction  algorithms  graphical-model  graph-theory  r  regression  regression-coefficients  r-squared  r  regression  modeling  confounding  residuals  fitting  glmm  zero-inflation  overdispersion  optimization  curve-fitting  regression  time-series  order-statistics  bayesian  prior  uninformative-prior  probability  discrete-data  kolmogorov-smirnov  r  data-visualization  histogram  dimensionality-reduction  classification  clustering  accuracy  semi-supervised  labeling  state-space-models  t-test  biostatistics  paired-comparisons  paired-data  bioinformatics  regression  logistic  multiple-regression  mixed-model  random-effects-model  neural-networks  error-propagation  numerical-integration  time-series  missing-data  data-imputation  probability  self-study  combinatorics  survival  cox-model  statistical-significance  wilcoxon-mann-whitney  hypothesis-testing  distributions  normal-distribution  variance  t-distribution  probability  simulation  random-walk  diffusion  hypothesis-testing  z-test  hypothesis-testing  data-transformation  lognormal  r  regression  agreement-statistics  classification  svm  mixed-model  non-independent  observational-study  goodness-of-fit  residuals  confirmatory-factor  neural-networks  deep-learning 

2
Eine Person wählt wiederholt die zwei ähnlichsten Elemente aus drei aus. Wie modelliere / schätze ich einen Wahrnehmungsabstand zwischen den Elementen?
Eine Person erhält drei Gegenstände, beispielsweise Bilder von Gesichtern, und wird gebeten, herauszufinden, welche der drei Gesichter am ähnlichsten sind. Dies wird sehr oft mit verschiedenen Kombinationen von Gesichtern wiederholt, wobei jedes Gesicht in vielen Kombinationen auftreten kann. Angesichts dieser Art von Daten möchte ich den Unterschied / die Ähnlichkeit …

1
Lineare Diskriminanzanalyse und nicht normalverteilte Daten
Wenn ich das richtig verstehe, setzt eine lineare Diskriminanzanalyse (LDA) normalverteilte Daten, unabhängige Merkmale und identische Kovarianzen für jede Klasse für das Optimalitätskriterium voraus. Ist es nicht schon eine Verletzung, da der Mittelwert und die Varianz aus den Trainingsdaten geschätzt werden? Ich fand ein Zitat in einem Artikel (Li, Tao, …

1
Wann ist es angebracht, PCA als Vorverarbeitungsschritt zu verwenden?
Ich verstehe, dass PCA zur Reduzierung der Dimensionalität verwendet wird, um Datensätze in 2D oder 3D zeichnen zu können. Ich habe aber auch Leute gesehen, die PCA als Vorverarbeitungsschritt in Klassifizierungsszenarien anwenden, in denen sie PCA anwenden, um die Anzahl der Merkmale zu reduzieren, und dann einige Hauptkomponenten (die Eigenvektoren …

2
Verwendung selbstorganisierender Karten zur Reduzierung der Dimensionalität
In den letzten Tagen habe ich einige Untersuchungen zu selbstorganisierenden Karten für ein Projekt in der Schule durchgeführt. Ich habe verstanden, dass selbstorganisierende Karten verwendet werden können, um die Dimensionalität Ihrer Daten zu verringern. Ich verstehe jedoch nicht, wie das funktioniert. Angenommen, Sie haben ein 10x10-Netzwerk von Neuronen in einem …


3
Post-hoc-Test in einer 2x3-ANOVA mit gemischtem Design unter Verwendung von SPSS?
Ich habe zwei Gruppen von 10 Teilnehmern, die während eines Experiments dreimal bewertet wurden. Um die Unterschiede zwischen den Gruppen und zwischen den drei Bewertungen zu testen, führte ich eine 2 × 3-ANOVA mit gemischtem Design mit group(Kontrolle, experimentell), time(erste, zweite, drei) und group x time. Beides timeund groupErgebnis signifikant, …
8 anova  mixed-model  spss  post-hoc  bonferroni  time-series  unevenly-spaced-time-series  classification  normal-distribution  discriminant-analysis  probability  normal-distribution  estimation  sampling  classification  svm  terminology  pivot-table  random-generation  self-study  estimation  sampling  estimation  categorical-data  maximum-likelihood  excel  least-squares  instrumental-variables  2sls  total-least-squares  correlation  self-study  variance  unbiased-estimator  bayesian  mixed-model  ancova  statistical-significance  references  p-value  fishers-exact  probability  monte-carlo  particle-filter  logistic  predictive-models  modeling  interaction  survey  hypothesis-testing  multiple-regression  regression  variance  data-transformation  residuals  minitab  r  time-series  forecasting  arima  garch  correlation  estimation  least-squares  bias  pca  predictive-models  genetics  sem  partial-least-squares  nonparametric  ordinal-data  wilcoxon-mann-whitney  bonferroni  wilcoxon-signed-rank  traminer  regression  econometrics  standard-error  robust  misspecification  r  probability  logistic  generalized-linear-model  r-squared  effect-size  gee  ordered-logit  bayesian  classification  svm  kernel-trick  nonlinear  bayesian  pca  dimensionality-reduction  eigenvalues  probability  distributions  mathematical-statistics  estimation  nonparametric  kernel-smoothing  expected-value  filter  mse  time-series  correlation  data-visualization  clustering  estimation  predictive-models  recommender-system  sparse  hypothesis-testing  data-transformation  parametric  probability  summations  correlation  pearson-r  spearman-rho  bayesian  replicability  dimensionality-reduction  discriminant-analysis  outliers  weka 

4
p-Wert als Abstand?
Können p-Werte zwischen mehreren paarweisen Tests als Ähnlichkeits- / Abstandsmaß betrachtet und eine mehrdimensionale Skalierung auf eine paarweise Matrix von p-Werten angewendet werden, um die Dimensionalität zu verringern? Dies ist eine weiche Frage, aber was wäre hier das größte Problem, und wie könnte dies am besten überwunden werden? (Beispiel: dreieckige …




2
Warum ist der Autoencoder-Decoder normalerweise die umgekehrte Architektur als Encoder?
Jede Autoencoder-Architektur, die ich gesehen habe, hat eine ähnliche Architektur, hauptsächlich, dass der Decoder genau das Gegenteil des Encoders ist. Wenn das Ziel des Autoencoders das Lernen von niedrigdimensionalen Merkmalen ist, warum ist der Decoder nicht einfach? Ein Beispiel wäre eine lineare Transformation wobei eine Beobachtung durch die Merkmalsmatrix (dh …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.