Als «naive-bayes» getaggte Fragen

Ein naiver Bayes-Klassifikator ist ein einfacher probabilistischer Klassifikator, der auf der Anwendung des Bayes-Theorems mit starken Unabhängigkeitsannahmen basiert. Ein aussagekräftigerer Begriff für das zugrunde liegende Wahrscheinlichkeitsmodell wäre "unabhängiges Merkmalsmodell".

1
Warum ist der naive Bayes-Klassifikator für einen 0: 1-Verlust optimal?
Der Naive Bayes-Klassifikator ist der Klassifikator, der Elemente einer Klasse auf der Grundlage der Maximierung des hinteren für die Klassenzugehörigkeit zuordnet und davon ausgeht, dass die Merkmale der Elemente unabhängig sind.C P ( C | x )xxxCCCP( C| x)P(C|x)P(C|x) Der 0-1-Verlust ist der Verlust, der einer Fehlklassifizierung einen Verlust von …



2
Akinator.com und Naive Bayes Klassifikator
Kontext: Ich bin ein Programmierer mit etwas (halb vergessener) Erfahrung in der Statistik von Uni-Kursen. Kürzlich bin ich auf http://akinator.com gestoßen und habe einige Zeit damit verbracht, es zum Scheitern zu bringen. Und wer war das nicht? :) Ich habe beschlossen, herauszufinden, wie es funktionieren könnte. Nachdem ich verwandte Blog-Beiträge …

2
Was kann ich mit einem naiven Bayes'schen Klassifikator vorhersagen?
Ich bin ein Anfänger in Statistik (habe nur einen College-Kurs belegt), aber ich habe einen Hintergrund in Programmierung. Ich habe gerade angefangen, mit einer Bayes'schen Klassifikatorbibliothek für Ruby zu spielen, und ich suche nach Ideen für zu analysierende Dinge. Im Moment spiele ich mit der Tweet-Kategorisierung herum, aber hast du …

3
Der Klassifikator „Gut“ hat meine Präzisions-Rückruf-Kurve zerstört. Was ist passiert?
Ich arbeite mit unausgeglichenen Daten, wobei es für jede Klasse = 1 ungefähr 40 Fälle von Klasse = 0 gibt. Ich kann die Klassen anhand einzelner Merkmale vernünftigerweise unterscheiden, und das Training eines naiven Bayes- und SVM-Klassifikators auf 6 Merkmale und ausgewogene Daten ergab eine bessere Unterscheidung (ROC-Kurven unten). Das …

1
Welches Deep-Learning-Modell kann Kategorien klassifizieren, die sich nicht gegenseitig ausschließen?
Beispiele: Ich habe einen Satz in der Stellenbeschreibung: "Java Senior Engineer in UK". Ich möchte ein Deep-Learning-Modell verwenden, um es als zwei Kategorien vorherzusagen: English und IT jobs. Wenn ich ein traditionelles Klassifizierungsmodell verwende, kann es nur 1 Etikett mit softmaxFunktion auf der letzten Ebene vorhersagen . Somit kann ich …
9 machine-learning  deep-learning  natural-language  tensorflow  sampling  distance  non-independent  application  regression  machine-learning  logistic  mixed-model  control-group  crossover  r  multivariate-analysis  ecology  procrustes-analysis  vegan  regression  hypothesis-testing  interpretation  chi-squared  bootstrap  r  bioinformatics  bayesian  exponential  beta-distribution  bernoulli-distribution  conjugate-prior  distributions  bayesian  prior  beta-distribution  covariance  naive-bayes  smoothing  laplace-smoothing  distributions  data-visualization  regression  probit  penalized  estimation  unbiased-estimator  fisher-information  unbalanced-classes  bayesian  model-selection  aic  multiple-regression  cross-validation  regression-coefficients  nonlinear-regression  standardization  naive-bayes  trend  machine-learning  clustering  unsupervised-learning  wilcoxon-mann-whitney  z-score  econometrics  generalized-moments  method-of-moments  machine-learning  conv-neural-network  image-processing  ocr  machine-learning  neural-networks  conv-neural-network  tensorflow  r  logistic  scoring-rules  probability  self-study  pdf  cdf  classification  svm  resampling  forecasting  rms  volatility-forecasting  diebold-mariano  neural-networks  prediction-interval  uncertainty 

1
Wird Naive Bayes immer beliebter? Warum?
Dies ist das Google-Trends- Ergebnis für die Phrase "Naive Bayes" von Januar 2004 bis April 2017 ( Link ). Demnach liegt die Suchquote für "Naive Bayes" im April 2017 im gesamten Zeitraum um 25% über dem Maximum. Bedeutet dies, dass diese einfache und alte Methode mehr Aufmerksamkeit erhält? Warum? Eine …

1
Algebraische Klassifikatoren, weitere Informationen?
Ich habe algebraische Klassifikatoren gelesen : einen generischen Ansatz für schnelle Kreuzvalidierung, Online-Training und paralleles Training und war von der Leistung der abgeleiteten Algorithmen begeistert. Es scheint jedoch, dass es jenseits von Naive Bayes (und GBMs) nicht viele Algorithmen gibt, die an das Framework angepasst sind. Gibt es andere Papiere, …

2
Berechnen Sie die ROC-Kurve für Daten
Ich habe also 16 Studien, in denen ich versuche, eine Person anhand eines biometrischen Merkmals mithilfe von Hamming Distance zu authentifizieren. Mein Schwellenwert ist auf 3,5 eingestellt. Meine Daten sind unten und nur Versuch 1 ist ein wahres Positiv: Trial Hamming Distance 1 0.34 2 0.37 3 0.34 4 0.29 …
9 mathematical-statistics  roc  classification  cross-validation  pac-learning  r  anova  survival  hazard  machine-learning  data-mining  hypothesis-testing  regression  random-variable  non-independent  normal-distribution  approximation  central-limit-theorem  interpolation  splines  distributions  kernel-smoothing  r  data-visualization  ggplot2  distributions  binomial  random-variable  poisson-distribution  simulation  kalman-filter  regression  lasso  regularization  lme4-nlme  model-selection  aic  r  mcmc  dlm  particle-filter  r  panel-data  multilevel-analysis  model-selection  entropy  graphical-model  r  distributions  quantiles  qq-plot  svm  matlab  regression  lasso  regularization  entropy  inference  r  distributions  dataset  algorithms  matrix-decomposition  regression  modeling  interaction  regularization  expected-value  exponential  gamma-distribution  mcmc  gibbs  probability  self-study  normality-assumption  naive-bayes  bayes-optimal-classifier  standard-deviation  classification  optimization  control-chart  engineering-statistics  regression  lasso  regularization  regression  references  lasso  regularization  elastic-net  r  distributions  aggregation  clustering  algorithms  regression  correlation  modeling  distributions  time-series  standard-deviation  goodness-of-fit  hypothesis-testing  statistical-significance  sample  binary-data  estimation  random-variable  interpolation  distributions  probability  chi-squared  predictor  outliers  regression  modeling  interaction 

4
Analyse des Fehlers des Bayes-Klassifikators analytisch
Wenn zwei Klassen und eine Normalverteilung mit bekannten Parametern haben ( , als Mittel und , sind ihre Kovarianzen), wie können wir den Fehler des Bayes-Klassifikators für sie theoretisch berechnen?w1w1w_1w2w2w_2M.1M1M_1Σ 1 Σ 2M.2M2M_2Σ1Σ1\Sigma_1Σ2Σ2\Sigma_2 Angenommen, die Variablen befinden sich im N-dimensionalen Raum. Hinweis: Eine Kopie dieser Frage ist auch unter https://math.stackexchange.com/q/11891/4051 …

3
Finden Sie die Verteilung und transformieren Sie sie in die Normalverteilung
Ich habe Daten, die beschreiben, wie oft ein Ereignis während einer Stunde stattfindet ("Anzahl pro Stunde", nph) und wie lange die Ereignisse dauern ("Dauer in Sekunden pro Stunde", dph). Dies sind die Originaldaten: nph <- c(2.50000000003638, 3.78947368414551, 1.51456310682008, 5.84686774940732, 4.58823529414907, 5.59999999993481, 5.06666666666667, 11.6470588233699, 1.99999999998209, NA, 4.46153846149851, 18, 1.05882352939726, 9.21739130425452, 27.8399999994814, …
8 normal-distribution  data-transformation  logistic  generalized-linear-model  ridge-regression  t-test  wilcoxon-signed-rank  paired-data  naive-bayes  distributions  logistic  goodness-of-fit  time-series  eviews  ecm  panel-data  reliability  psychometrics  validity  cronbachs-alpha  self-study  random-variable  expected-value  median  regression  self-study  multiple-regression  linear-model  forecasting  prediction-interval  normal-distribution  excel  bayesian  multivariate-analysis  modeling  predictive-models  canonical-correlation  rbm  time-series  machine-learning  neural-networks  fishers-exact  factorisation-theorem  svm  prediction  linear  reinforcement-learning  cdf  probability-inequalities  ecdf  time-series  kalman-filter  state-space-models  dynamic-regression  index-decomposition  sampling  stratification  cluster-sample  survey-sampling  distributions  maximum-likelihood  gamma-distribution 

2
Naive Bayes über kontinuierliche Variablen
Bitte erlauben Sie mir, eine grundlegende Frage zu stellen. Ich verstehe die Mechanik von Naive Bayes für diskrete Variablen und kann die Berechnungen "von Hand" wiederholen. (Code von HouseVotes84 ganz unten). Ich habe jedoch Schwierigkeiten zu sehen, wie die Mechanik für kontinuierliche Variablen funktioniert (Beispielcode siehe unten). Wie berechnet das …
8 r  naive-bayes  bayes 


3
Wie werden Klassifikationen in einem Ensemble-Klassifikator zusammengeführt?
Wie verschmilzt ein Ensemble-Klassifikator die Vorhersagen seiner konstituierenden Klassifikatoren? Ich habe Schwierigkeiten, eine klare Beschreibung zu finden. In einigen Codebeispielen, die ich gefunden habe, mittelt das Ensemble nur die Vorhersagen, aber ich sehe nicht, wie dies zu einer "besseren" Gesamtgenauigkeit führen könnte. Betrachten Sie den folgenden Fall. Ein Ensemble-Klassifikator besteht …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.