Als «joint-distribution» getaggte Fragen

Die gemeinsame Wahrscheinlichkeitsverteilung mehrerer Zufallsvariablen gibt die Wahrscheinlichkeit an, dass alle gleichzeitig in einer bestimmten Region liegen.


1
Obergrenzen für die Copuladichte?
Die Fréchet-Hoeffding-Obergrenze gilt für die Kopula-Verteilungsfunktion und ist gegeben durch C( u1, . . . , ud) ≤ min { u1, . . , ud} .C(u1,...,ud)≤Mindest{u1,..,ud}.C(u_1,...,u_d)\leq \min\{u_1,..,u_d\}. Gibt es eine ähnliche (in dem Sinne, dass es von den Randdichten abhängt) Obergrenze für die anstelle der CDF?c ( u1, . . …

5
Unterschied zwischen den Begriffen "gemeinsame Verteilung" und "multivariate Verteilung"?
Ich schreibe über die Verwendung einer "gemeinsamen Wahrscheinlichkeitsverteilung" für ein Publikum, das mit größerer Wahrscheinlichkeit die "multivariate Verteilung" verstehen würde, und überlege daher, die spätere zu verwenden. Dabei möchte ich aber nicht den Sinn verlieren. Wikipedia scheint darauf hinzuweisen, dass es sich um Synonyme handelt. Sind sie? Wenn nein, warum …

3
Maximum-Likelihood-Schätzer der gemeinsamen Verteilung bei nur marginalen Zählungen
Sei px,ypx,yp_{x,y} eine gemeinsame Verteilung zweier kategorialer Variablen X,YX,YX,Y mit x,y∈{1,…,K}x,y∈{1,…,K}x,y\in\{1,\ldots,K\} . Angenommen, es wurden nnn Stichproben aus dieser Verteilung gezogen, aber wir erhalten nur die Grenzwerte, nämlich für j=1,…,Kj=1,…,Kj=1,\ldots,K : Sj=∑i=1nδ(Xi=l),Tj=∑i=1nδ(Yi=j),Sj=∑i=1nδ(Xi=l),Tj=∑i=1nδ(Yi=j), S_j = \sum_{i=1}^{n}{\delta(X_i=l)}, T_j = \sum_{i=1}^{n}{\delta(Y_i=j)}, Was ist der Maximum-Likelihood-Schätzer für px,ypx,yp_{x,y} bei Sj,TjSj,TjS_j,T_j ? Ist das bekannt? …


1
Wie kann man eine marginale Verteilung aus einer gemeinsamen Verteilung mit einer Abhängigkeit von mehreren Variablen finden?
Eines der Probleme in meinem Lehrbuch ist wie folgt. Ein zweidimensionaler stochastischer kontinuierlicher Vektor hat die folgende Dichtefunktion: fX., Y.( x , y) = { 15 x y20wenn 0 <x <1 und 0 <y <xAndernfallsfX,Y(x,y)={15xy2if 0 < x < 1 and 0 < y < x0otherwise f_{X,Y}(x,y)= \begin{cases} 15xy^2 & …

2
Gilt der multivariate zentrale Grenzwertsatz (CLT), wenn Variablen eine perfekte zeitgleiche Abhängigkeit aufweisen?
Xi∽iidN(0,1)Xi∽iidN(0,1)X_i \overset{iid}{\backsim} \mathcal{N}(0, 1)i=1,...,ni=1,...,ni = 1, ..., nSn=1n∑i=1nXiSn=1n∑i=1nXi\begin{equation} S_n = \frac{1}{n} \sum_{i=1}^n X_i \end{equation}Tn=1n∑i=1n(X2i−1)Tn=1n∑i=1n(Xi2−1)\begin{equation} T_n = \frac{1}{n} \sum_{i=1}^n (X_i^2 - 1) \end{equation} SnSnS_nTnTnT_nn=1n=1n = 1n−−√SnnSn\sqrt{n} S_nn−−√TnnTn\sqrt{n} T_nn→∞n→∞n \rightarrow \infty Die Motivation: Meine Motivation für die Frage ergibt sich aus der Tatsache, dass es seltsam (aber wunderbar) ist, dass SnSnS_n und …

1
Wie kann man beobachtete mit erwarteten Ereignissen vergleichen?
Angenommen, ich habe eine Stichprobe von Häufigkeiten von 4 möglichen Ereignissen: Event1 - 5 E2 - 1 E3 - 0 E4 - 12 und ich habe die erwarteten Wahrscheinlichkeiten, dass meine Ereignisse eintreten: p1 - 0.2 p2 - 0.1 p3 - 0.1 p4 - 0.6 Mit der Summe der beobachteten …
9 r  statistical-significance  chi-squared  multivariate-analysis  exponential  joint-distribution  statistical-significance  self-study  standard-deviation  probability  normal-distribution  spss  interpretation  assumptions  cox-model  reporting  cox-model  statistical-significance  reliability  method-comparison  classification  boosting  ensemble  adaboost  confidence-interval  cross-validation  prediction  prediction-interval  regression  machine-learning  svm  regularization  regression  sampling  survey  probit  matlab  feature-selection  information-theory  mutual-information  time-series  forecasting  simulation  classification  boosting  ensemble  adaboost  normal-distribution  multivariate-analysis  covariance  gini  clustering  text-mining  distance-functions  information-retrieval  similarities  regression  logistic  stata  group-differences  r  anova  confidence-interval  repeated-measures  r  logistic  lme4-nlme  inference  fiducial  kalman-filter  classification  discriminant-analysis  linear-algebra  computing  statistical-significance  time-series  panel-data  missing-data  uncertainty  probability  multivariate-analysis  r  classification  spss  k-means  discriminant-analysis  poisson-distribution  average  r  random-forest  importance  probability  conditional-probability  distributions  standard-deviation  time-series  machine-learning  online  forecasting  r  pca  dataset  data-visualization  bayes  distributions  mathematical-statistics  degrees-of-freedom 


1
Analytische Lösung der Probenahme mit oder ohne Ersatz nach Poisson / Negativ-Binomial
Kurzfassung Ich versuche, die zusammengesetzte Wahrscheinlichkeit, die sich aus unabhängigen Poisson-Ziehungen und weiteren Stichproben mit oder ohne Ersatz ergibt, analytisch zu lösen / zu approximieren (es ist mir eigentlich egal, welche). Ich möchte die Wahrscheinlichkeit mit MCMC (Stan) verwenden, daher benötige ich die Lösung nur bis zu einer konstanten Laufzeit. …



1
X, Y univariate Zufallsvariable mit : Sind sie unabhängig?
Sei und univariate Zufallsvariablen mit CDF so dass: wobei , sind bekannte Funktionen.X:Ω→RX:Ω→RX:\Omega\to\mathbb{R}Y:Ω→RY:Ω→RY:\Omega\to\mathbb{R}FX,Y(x,y)FX,Y(x,y)F_{X,Y}(x,y)FX,Y(x,y)=G1(x)G2(y),∀(x,y)∈R×RFX,Y(x,y)=G1(x)G2(y),∀(x,y)∈R×R F_{X,Y}(x,y)=G_1(x)G_2(y),\forall (x,y)\in\mathbb{R}\times\mathbb{R} G1:R→RG1:R→RG_1:\mathbb{R}\to\mathbb{R}G2:R→RG2:R→RG_2:\mathbb{R}\to\mathbb{R} Frage : Stimmt es, dass und unabhängige Wohnmobile sind?XXXYYY Kann mir jemand ein paar Tipps geben? Ich habe versucht: aber ich weiß nicht warum (oder ob) \ lim_ {y \ to \ infty} G_2 …

1
Mahalanobis-Abstand bei nicht normalen Daten
Der Mahalanobis-Abstand nimmt bei Verwendung zu Klassifizierungszwecken typischerweise eine multivariate Normalverteilung an, und die Abstände vom Schwerpunkt sollten dann einer Verteilung folgen (wobei Freiheitsgrade gleich der Anzahl der Dimensionen / Merkmale sind). Wir können die Wahrscheinlichkeit, dass ein neuer Datenpunkt zur Menge gehört, anhand seiner Mahalanobis-Entfernung berechnen.χ2χ2\chi^2ddd Ich habe Datensätze, …


Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.