Die erwartete quadratische Abweichung einer Zufallsvariablen von ihrem Mittelwert; oder die durchschnittliche quadratische Abweichung der Daten über ihren Mittelwert.
Ich überarbeite ein Papier zur Bestäubung, in dem die Daten binomial verteilt sind (Obst reift oder nicht). Also habe ich glmermit einem zufälligen Effekt (einzelne Pflanze) und einem festen Effekt (Behandlung) gearbeitet. Ein Gutachter möchte wissen, ob die Pflanze einen Einfluss auf den Fruchtansatz hatte - aber ich habe Probleme, …
Cohens ddd ist eine der häufigsten Methoden, um die Größe eines Effekts zu messen ( siehe Wikipedia ). Es misst einfach den Abstand zwischen zwei Mitteln als gepoolte Standardabweichung. Wie können wir die mathematische Formel der Varianzschätzung von Cohens ableiten ddd? Dezember 2015 edit: Im Zusammenhang mit dieser Frage steht …
(Ich habe eine ähnliche Frage auf math.se gestellt .) In der Informationsgeometrie ist die Determinante der Fisher-Informationsmatrix eine natürliche Volumenform auf einer statistischen Mannigfaltigkeit, daher hat sie eine schöne geometrische Interpretation. Die Tatsache, dass es beispielsweise in der Definition eines Jeffreys vorkommt, hängt mit seiner Invarianz unter Reparametrisierungen zusammen, die …
Ich habe einen sehr großen Datensatz und es fehlen ungefähr 5% zufällige Werte. Diese Variablen sind miteinander korreliert. Der folgende Beispiel-R-Datensatz ist nur ein Spielzeugbeispiel mit Dummy-korrelierten Daten. set.seed(123) # matrix of X variable xmat <- matrix(sample(-1:1, 2000000, replace = TRUE), ncol = 10000) colnames(xmat) <- paste ("M", 1:10000, sep …
Ich habe mich gefragt, wie ich aus einem Boxplot die Varianz einer Variablen ableiten kann. Lässt sich zumindest ableiten, ob zwei Variablen unter Berücksichtigung ihres Boxplots dieselbe Varianz aufweisen?
Es verwirrt / verwirrt mich, dass das Binomial eine Varianz proportional zu p(1−p)p(1−p)p(1-p) . Entsprechend ist die Fisher-Information proportional zu 1p(1−p)1p(1−p)\frac{1}{p(1-p)} . Was ist der Grund dafür? Warum wird die Fisher-Information beiminimiertp=0.5p=0.5p=0.5? Das heißt, warum ist die Inferenz beiam schwierigstenp=0.5p=0.5p=0.5? Kontext: Ich arbeite an einem Stichprobengrößenrechner, und die Formel für …
Ich befasse mich mit dem Problem, dass ich den p-Wert für eine Schätzung von aus multipliziert unterstellten (MI) Daten bootstrappen möchte , aber mir unklar ist, wie ich die p-Werte über MI-Mengen kombinieren soll.θθ\theta Für MI-Datensätze verwendet der Standardansatz zur Ermittlung der Gesamtvarianz von Schätzungen Rubins Regeln. Sehen Sie hier …
Ich möchte die Mittelwerte über drei Gruppen gleicher Größe vergleichen (gleiche Stichprobengröße ist klein, 21). Die Mittelwerte jeder Gruppe sind normalerweise verteilt, aber ihre Varianzen sind ungleich (getestet über Levene's). Ist eine Transformation der beste Weg in dieser Situation? Sollte ich zuerst etwas anderes in Betracht ziehen?
Hinweis: Diese Frage ist ein Repost, da meine vorherige Frage aus rechtlichen Gründen gelöscht werden musste. Beim Vergleich von PROC MIXED von SAS mit der Funktion lmeaus dem nlmePaket in R bin ich auf einige verwirrende Unterschiede gestoßen. Insbesondere unterscheiden sich die Freiheitsgrade in den verschiedenen Tests zwischen PROC MIXEDund …
Ich möchte einige Daten modellieren, bin mir jedoch nicht sicher, welchen Modelltyp ich verwenden kann. Ich habe Zähldaten und möchte ein Modell, das parametrische Schätzungen sowohl des Mittelwerts als auch der Varianz der Daten liefert. Das heißt, ich habe verschiedene Vorhersagefaktoren und möchte feststellen, ob einer von ihnen die Varianz …
Problem: Ich parametrisiere Verteilungen zur Verwendung als Prioritäten und Daten in einer Bayes'schen Metaanalyse. Die Daten werden in der Literatur als zusammenfassende Statistiken bereitgestellt, von denen fast ausschließlich angenommen wird, dass sie normal verteilt sind (obwohl keine der Variablen <0 sein kann, einige Verhältnisse sind, andere Massen sind und usw.). …
Ich habe kürzlich eine Frage gestellt, die nach einer mathematischen Interpretation / Intuition hinter der Elementargleichung für Stichprobenmittelwert und Varianz sucht: , geometrisch oder auf andere Weise.E[X2]=Var(X)+(E[X])2E[X2]=Var(X)+(E[X])2 E[X^2] = Var(X) +(E[X])^2 Aber jetzt bin ich neugierig auf die oberflächlich ähnliche Bias-Varianz-Kompromissgleichung. (Formeln ausWikipedia)MSE(θ^)=E[(θ^−θ)2]==E[(θ^−E[θ^])2]+(E[θ^]−θ)2Var(θ^)+Bias(θ^,θ)2MSE(θ^)=E[(θ^−θ)2]=E[(θ^−E[θ^])2]+(E[θ^]−θ)2=Var(θ^)+Bias(θ^,θ)2 \begin{eqnarray} \text{MSE}(\hat{\theta}) = E [(\hat{\theta}-\theta)^2 ] &=& …
Ich war in dem Python über Regressions Metriken Lese Scikit-Learn Handbuch und obwohl jeder von ihnen seine eigenen Formel hat, kann ich nicht intuitiv sagen , was ist der Unterschied zwischen und Varianz - Score und daher , wenn der eine oder andere zu verwenden , um zu bewerten meine …
Wie wird die Var / Cov-Fehlermatrix in der Praxis von statistischen Analysepaketen berechnet? Diese Idee ist mir theoretisch klar. Aber nicht in der Praxis. Ich meine, wenn ich einen Vektor von Zufallsvariablen , verstehe ich, dass die Varianz / Kovarianz-Matrix erhält das externe Produkt der vom Mittelwert abweichenden Vektoren: .X=(X1,X2,…,Xn)⊤X=(X1,X2,…,Xn)⊤\textbf{X}=(X_{1}, …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.