Als «numerical-integration» getaggte Fragen

Eine Klasse von Algorithmen zur Approximation bestimmter Integrale.

3
Ein Beispiel: LASSO-Regression unter Verwendung von glmnet für binäre Ergebnisse
Ich beginne mit der Verwendung von dabble glmnetmit LASSO Regression , wo mein Ergebnis von Interesse dichotomous ist. Ich habe unten einen kleinen nachgebildeten Datenrahmen erstellt: age <- c(4, 8, 7, 12, 6, 9, 10, 14, 7) gender <- c(1, 0, 1, 1, 1, 0, 1, 0, 0) bmi_p <- …
77 r  self-study  lasso  regression  interpretation  anova  statistical-significance  survey  conditional-probability  independence  naive-bayes  graphical-model  r  time-series  forecasting  arima  r  forecasting  exponential-smoothing  bootstrap  outliers  r  regression  poisson-distribution  zero-inflation  genetic-algorithms  machine-learning  feature-selection  cart  categorical-data  interpretation  descriptive-statistics  variance  multivariate-analysis  covariance-matrix  r  data-visualization  generalized-linear-model  binomial  proportion  pca  matlab  svd  time-series  correlation  spss  arima  chi-squared  curve-fitting  text-mining  zipf  probability  categorical-data  distance  group-differences  bhattacharyya  regression  variance  mean  data-visualization  variance  clustering  r  standard-error  association-measure  somers-d  normal-distribution  integral  numerical-integration  bayesian  clustering  python  pymc  nonparametric-bayes  machine-learning  svm  kernel-trick  hyperparameter  poisson-distribution  mean  continuous-data  univariate  missing-data  dag  python  likelihood  dirichlet-distribution  r  anova  hypothesis-testing  statistical-significance  p-value  rating  data-imputation  censoring  threshold 

6
Ungefähre mit Hilfe von Monte - Carlo - Simulation
Ich habe mir kürzlich die Monte-Carlo-Simulation angesehen und sie verwendet, um Konstanten wie (Kreis in einem Rechteck, proportionale Fläche) anzunähern.ππ\pi Ich kann mir jedoch keine entsprechende Methode vorstellen, um den Wert von [Eulers Zahl] mithilfe der Monte-Carlo-Integration zu approximieren .eee Haben Sie Hinweise, wie dies getan werden kann?

1
Metropolis-Hastings-Integration - warum funktioniert meine Strategie nicht?
Angenommen, ich habe eine Funktion , die ich integrieren möchte: Natürlich unter der Annahme, dass an den Endpunkten auf Null geht, keine Blowups, nette Funktion. Eine Möglichkeit, mit der ich herumgespielt habe, besteht darin, mit dem Metropolis-Hastings-Algorithmus eine Liste der Stichproben aus der zu proportionalen Verteilung zu , in der …

1
Was ist die Intuition hinter austauschbaren Proben unter der Nullhypothese?
Permutationstests (auch Randomisierungstest, Re-Randomisierungstest oder exakter Test genannt) sind sehr nützlich und nützlich, wenn die zum Beispiel erforderliche Annahme einer Normalverteilung t-testnicht erfüllt ist und wenn die Transformation der Werte durch Rangfolge der Werte erfolgt Ein nicht parametrischer Test Mann-Whitney-U-testwürde dazu führen, dass mehr Informationen verloren gehen. Eine einzige Annahme, …
15 hypothesis-testing  permutation-test  exchangeability  r  statistical-significance  loess  data-visualization  normal-distribution  pdf  ggplot2  kernel-smoothing  probability  self-study  expected-value  normal-distribution  prior  correlation  time-series  regression  heteroscedasticity  estimation  estimators  fisher-information  data-visualization  repeated-measures  binary-data  panel-data  mathematical-statistics  coefficient-of-variation  normal-distribution  order-statistics  regression  machine-learning  one-class  probability  estimators  forecasting  prediction  validation  finance  measurement-error  variance  mean  spatial  monte-carlo  data-visualization  boxplot  sampling  uniform  chi-squared  goodness-of-fit  probability  mixture  theory  gaussian-mixture  regression  statistical-significance  p-value  bootstrap  regression  multicollinearity  correlation  r  poisson-distribution  survival  regression  categorical-data  ordinal-data  ordered-logit  regression  interaction  time-series  machine-learning  forecasting  cross-validation  binomial  multiple-comparisons  simulation  false-discovery-rate  r  clustering  frequency  wilcoxon-mann-whitney  wilcoxon-signed-rank  r  svm  t-test  missing-data  excel  r  numerical-integration  r  random-variable  lme4-nlme  mixed-model  weighted-regression  power-law  errors-in-variables  machine-learning  classification  entropy  information-theory  mutual-information 


2
Kernel-Dichteschätzer in 2D integrieren
Ich komme von dieser Frage, falls jemand der Spur folgen möchte. Grundsätzlich habe ich einen Datensatz ΩΩ\Omega bestehend aus NNN Objekten, an die an jedem Objekt eine bestimmte Anzahl von Messwerten angehängt ist (in diesem Fall zwei): Ω=o1[x1,y1],o2[x2,y2],...,oN[xN,yN]Ω=o1[x1,y1],o2[x2,y2],...,oN[xN,yN]\Omega = o_1[x_1, y_1], o_2[x_2, y_2], ..., o_N[x_N, y_N] Ich brauche einen Weg …

1
Schnelle Integration in eCDF in R.
Ich habe eine Integralgleichung der Form wobei das empirische cdf ist und eine Funktion ist . Ich habe eine Kontraktionsabbildung und versuche daher, die Integralgleichung mithilfe der Banach-Fixpunktsatzsequenz zu lösen.T1(x)=∫x0g(T1(y)) dF^n(y)T1(x)=∫0xg(T1(y)) dF^n(y) T_1(x) = \int_0^x g(T_1(y)) \ d\hat{F}_n(y) F^nF^n\hat{F}_nggg Dies läuft jedoch in R sehr langsam und ich denke, das …


3
Ein konkretes Beispiel ist die Durchführung einer SVD, um fehlende Werte zu unterstellen
Ich habe die großartigen Kommentare zum Umgang mit fehlenden Werten vor dem Anwenden von SVD gelesen, möchte aber anhand eines einfachen Beispiels wissen, wie dies funktioniert: Movie1 Movie2 Movie3 User1 5 4 User2 2 5 5 User3 3 4 User4 1 5 User5 5 1 5 Wenn ich in der …
8 r  missing-data  data-imputation  svd  sampling  matlab  mcmc  importance-sampling  predictive-models  prediction  algorithms  graphical-model  graph-theory  r  regression  regression-coefficients  r-squared  r  regression  modeling  confounding  residuals  fitting  glmm  zero-inflation  overdispersion  optimization  curve-fitting  regression  time-series  order-statistics  bayesian  prior  uninformative-prior  probability  discrete-data  kolmogorov-smirnov  r  data-visualization  histogram  dimensionality-reduction  classification  clustering  accuracy  semi-supervised  labeling  state-space-models  t-test  biostatistics  paired-comparisons  paired-data  bioinformatics  regression  logistic  multiple-regression  mixed-model  random-effects-model  neural-networks  error-propagation  numerical-integration  time-series  missing-data  data-imputation  probability  self-study  combinatorics  survival  cox-model  statistical-significance  wilcoxon-mann-whitney  hypothesis-testing  distributions  normal-distribution  variance  t-distribution  probability  simulation  random-walk  diffusion  hypothesis-testing  z-test  hypothesis-testing  data-transformation  lognormal  r  regression  agreement-statistics  classification  svm  mixed-model  non-independent  observational-study  goodness-of-fit  residuals  confirmatory-factor  neural-networks  deep-learning 

1
Wahrscheinlichkeit und Schätzungen für gemischte Effekte Logistische Regression
Lassen Sie uns zunächst einige Daten für eine logistische Regression mit festen und zufälligen Teilen simulieren: set.seed(1) n <- 100 x <- runif(n) z <- sample(c(0,1), n, replace=TRUE) b <- rnorm(2) beta <- c(0.4, 0.8) X <- model.matrix(~x) Z <- cbind(z, 1-z) eta <- X%*%beta + Z%*%b pr <- 1/(1+exp(-eta)) …
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.