Als «prediction» getaggte Fragen

Vorhersage unbekannter Zufallsgrößen anhand eines statistischen Modells.

2
Eine "signifikante Variable", die die Vorhersagen außerhalb der Stichprobe nicht verbessert - wie zu interpretieren?
Ich habe eine Frage, von der ich denke, dass sie für viele Benutzer ziemlich einfach sein wird. Ich verwende lineare Regressionsmodelle, um (i) die Beziehung mehrerer erklärender Variablen und meiner Antwortvariablen zu untersuchen und (ii) meine Antwortvariable unter Verwendung der erklärenden Variablen vorherzusagen. Eine bestimmte erklärende Variable X scheint meine …

1
Was ist der Unterschied zwischen Entscheidungsfunktion, Vorhersagefunktion und Vorhersagefunktion für das logistische Regressionsproblem?
Ich habe die sklearn-Dokumentation durchgearbeitet, kann jedoch den Zweck dieser Funktionen im Kontext der logistischen Regression nicht verstehen. Denn decision_functiones heißt, dass es der Abstand zwischen der Hyperebene und der Testinstanz ist. Wie sind diese speziellen Informationen nützlich? und wie hängt das mit predictund predict-probamethoden zusammen?

2
Bewerten Sie die posteriore prädiktive Verteilung in der Bayes'schen linearen Regression
Ich bin verwirrt darüber, wie die posteriore prädiktive Verteilung für die Bayes'sche lineare Regression nach dem hier auf Seite 3 beschriebenen und unten kopierten Grundfall bewertet werden soll. p ( y~∣ y)=∫p(y~∣β,σ2)p(β,σ2∣y)p(y~∣y)=∫p(y~∣β,σ2)p(β,σ2∣y) p(\tilde y \mid y) = \int p(\tilde y \mid \beta, \sigma^2) p(\beta, \sigma^2 \mid y) Der Grundfall ist …

1
Berechnung von Vorhersageintervallen bei Verwendung der Kreuzvalidierung
Werden Standardabweichungsschätzungen berechnet über: sN=1N∑Ni=1(xi−x¯¯¯)2−−−−−−−−−−−−−√.sN=1N∑i=1N(xi−x¯)2. s_N = \sqrt{\frac{1}{N} \sum_{i=1}^N (x_i - \overline{x})^2}. ( http://en.wikipedia.org/wiki/Standard_deviation#Sample_standard_deviation ) für Vorhersagegenauigkeiten, die aus einer 10-fachen Kreuzvalidierung entnommen wurden? Ich bin besorgt, dass die zwischen jeder Falte berechnete Vorhersagegenauigkeit aufgrund der erheblichen Überlappung zwischen Trainingssätzen abhängig ist (obwohl die Vorhersagesätze unabhängig sind). Alle Ressourcen, die …


1
R lineare Regression kategoriale Variable "versteckter" Wert
Dies ist nur ein Beispiel, auf das ich mehrmals gestoßen bin, daher habe ich keine Beispieldaten. Ausführen eines linearen Regressionsmodells in R: a.lm = lm(Y ~ x1 + x2) x1ist eine stetige Variable. x2ist kategorisch und hat drei Werte, z. B. "Niedrig", "Mittel" und "Hoch". Die von R gegebene Ausgabe …
10 r  regression  categorical-data  regression-coefficients  categorical-encoding  machine-learning  random-forest  anova  spss  r  self-study  bootstrap  monte-carlo  r  multiple-regression  partitioning  neural-networks  normalization  machine-learning  svm  kernel-trick  self-study  survival  cox-model  repeated-measures  survey  likert  correlation  variance  sampling  meta-analysis  anova  independence  sample  assumptions  bayesian  covariance  r  regression  time-series  mathematical-statistics  graphical-model  machine-learning  linear-model  kernel-trick  linear-algebra  self-study  moments  function  correlation  spss  probability  confidence-interval  sampling  mean  population  r  generalized-linear-model  prediction  offset  data-visualization  clustering  sas  cart  binning  sas  logistic  causality  regression  self-study  standard-error  r  distributions  r  regression  time-series  multiple-regression  python  chi-squared  independence  sample  clustering  data-mining  rapidminer  probability  stochastic-processes  clustering  binary-data  dimensionality-reduction  svd  correspondence-analysis  data-visualization  excel  c#  hypothesis-testing  econometrics  survey  rating  composite  regression  least-squares  mcmc  markov-process  kullback-leibler  convergence  predictive-models  r  regression  anova  confidence-interval  survival  cox-model  hazard  normal-distribution  autoregressive  mixed-model  r  mixed-model  sas  hypothesis-testing  mediation  interaction 

2
Bias-Varianz-Zerlegung: Begriff für den erwarteten quadratischen Prognosefehler abzüglich des nicht reduzierbaren Fehlers
Hastie et al. "Die Elemente des statistischen Lernens" (2009) betrachten einen Datenerzeugungsprozess mit und .Y=f(X)+εY=f(X)+ε Y = f(X) + \varepsilon E(ε)=0E(ε)=0\mathbb{E}(\varepsilon)=0Var(ε)=σ2εVar(ε)=σε2\text{Var}(\varepsilon)=\sigma^2_{\varepsilon} Sie zeigen die folgende Bias-Varianz-Zerlegung des erwarteten quadratischen Prognosefehlers am Punkt (S. 223, Formel 7.9): In my eigene Arbeit Ich gebe nicht sondern nehme stattdessen eine willkürliche Prognose (falls …


3
K-fache oder Hold-out-Kreuzvalidierung für die Gratregression mit R.
Ich arbeite an einer Kreuzvalidierung der Vorhersage meiner Daten mit 200 Probanden und 1000 Variablen. Ich bin an einer Ridge-Regression interessiert, da die Anzahl der Variablen (die ich verwenden möchte) größer ist als die Anzahl der Stichproben. Ich möchte also Schrumpfungsschätzer verwenden. Die folgenden Beispieldaten bestehen aus: #random population of …



1
Wie kann man beobachtete mit erwarteten Ereignissen vergleichen?
Angenommen, ich habe eine Stichprobe von Häufigkeiten von 4 möglichen Ereignissen: Event1 - 5 E2 - 1 E3 - 0 E4 - 12 und ich habe die erwarteten Wahrscheinlichkeiten, dass meine Ereignisse eintreten: p1 - 0.2 p2 - 0.1 p3 - 0.1 p4 - 0.6 Mit der Summe der beobachteten …
9 r  statistical-significance  chi-squared  multivariate-analysis  exponential  joint-distribution  statistical-significance  self-study  standard-deviation  probability  normal-distribution  spss  interpretation  assumptions  cox-model  reporting  cox-model  statistical-significance  reliability  method-comparison  classification  boosting  ensemble  adaboost  confidence-interval  cross-validation  prediction  prediction-interval  regression  machine-learning  svm  regularization  regression  sampling  survey  probit  matlab  feature-selection  information-theory  mutual-information  time-series  forecasting  simulation  classification  boosting  ensemble  adaboost  normal-distribution  multivariate-analysis  covariance  gini  clustering  text-mining  distance-functions  information-retrieval  similarities  regression  logistic  stata  group-differences  r  anova  confidence-interval  repeated-measures  r  logistic  lme4-nlme  inference  fiducial  kalman-filter  classification  discriminant-analysis  linear-algebra  computing  statistical-significance  time-series  panel-data  missing-data  uncertainty  probability  multivariate-analysis  r  classification  spss  k-means  discriminant-analysis  poisson-distribution  average  r  random-forest  importance  probability  conditional-probability  distributions  standard-deviation  time-series  machine-learning  online  forecasting  r  pca  dataset  data-visualization  bayes  distributions  mathematical-statistics  degrees-of-freedom 

2
Verwenden eines Regressionsmodells zur Vorhersage: Wann aufhören?
Ich habe aus meinen experimentellen Messungen ein einfaches lineares Regressionsmodell berechnet, um Vorhersagen zu treffen. Ich habe gelesen, dass Sie keine Vorhersagen für Punkte berechnen sollten, die zu weit von den verfügbaren Daten abweichen. Ich konnte jedoch keine Anleitung finden, die mir hilft, zu wissen, wie weit ich extrapolieren kann. …

1
GLM-Poisson mit Offset vorhersagen
Ich weiß, dass dies wahrscheinlich eine grundlegende Frage ist ... Aber ich scheine keine Antwort zu finden. Ich passe ein GLM an eine Poisson-Familie an und habe dann versucht, einen Blick auf die Vorhersagen zu werfen, aber der Offset scheint berücksichtigt zu werden: model_glm=glm(cases~rhs(data$year,2003)+lhs(data$year,2003), offset=(log(population)), data=data, subset=28:36, family=poisson()) predict (model_glm, …

3
Bayesianische Vorhersageverteilungen verstehen
Ich nehme an einem Intro-to-Bayes-Kurs teil und habe Schwierigkeiten, prädiktive Verteilungen zu verstehen. Ich verstehe, warum sie nützlich sind und ich bin mit der Definition vertraut, aber es gibt einige Dinge, die ich nicht ganz verstehe. 1) Wie man die richtige Vorhersageverteilung für einen Vektor neuer Beobachtungen erhält Angenommen, wir …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.