Als «cart» getaggte Fragen

"Klassifikations- und Regressionsbäume". CART ist eine beliebte maschinelle Lerntechnik und bildet die Grundlage für Techniken wie zufällige Wälder und gängige Implementierungen von Maschinen zur Erhöhung des Gradienten.

1
Entscheidungsbäume Variable (Feature) Skalierung und Variable (Feature) Normalisierung (Tuning) in welchen Implementierungen erforderlich?
In vielen Algorithmen für maschinelles Lernen ist die Feature-Skalierung (auch bekannt als variable Skalierung, Normalisierung) ein häufiger Vorverarbeitungsschritt. Wikipedia - Feature-Skalierung - Diese Frage war knapp. Frage 41704 - Wie und warum funktionieren Normalisierung und Feature-Skalierung? Ich habe zwei Fragen speziell in Bezug auf Entscheidungsbäume: Gibt es Implementierungen von Entscheidungsbäumen, …

1
Warum haben Anova () und drop1 () unterschiedliche Antworten für GLMMs geliefert?
Ich habe ein GLMM der Form: lmer(present? ~ factor1 + factor2 + continuous + factor1*continuous + (1 | factor3), family=binomial) Wenn ich benutze drop1(model, test="Chi"), erhalte ich andere Ergebnisse als wenn ich Anova(model, type="III")aus dem Autopaket oder benutze summary(model). Diese beiden letzteren geben die gleichen Antworten. Unter Verwendung einer Reihe …
10 r  anova  glmm  r  mixed-model  bootstrap  sample-size  cross-validation  roc  auc  sampling  stratification  random-allocation  logistic  stata  interpretation  proportion  r  regression  multiple-regression  linear-model  lm  r  cross-validation  cart  rpart  logistic  generalized-linear-model  econometrics  experiment-design  causality  instrumental-variables  random-allocation  predictive-models  data-mining  estimation  contingency-tables  epidemiology  standard-deviation  mean  ancova  psychology  statistical-significance  cross-validation  synthetic-data  poisson-distribution  negative-binomial  bioinformatics  sequence-analysis  distributions  binomial  classification  k-means  distance  unsupervised-learning  euclidean  correlation  chi-squared  spearman-rho  forecasting  excel  exponential-smoothing  binomial  sample-size  r  change-point  wilcoxon-signed-rank  ranks  clustering  matlab  covariance  covariance-matrix  normal-distribution  simulation  random-generation  bivariate  standardization  confounding  z-statistic  forecasting  arima  minitab  poisson-distribution  negative-binomial  poisson-regression  overdispersion  probability  self-study  markov-process  estimation  maximum-likelihood  classification  pca  group-differences  chi-squared  survival  missing-data  contingency-tables  anova  proportion 

1
Baumgröße in Gradientenbaumverstärkung
Die von Friedman vorgeschlagene Erhöhung des Gradientenbaums verwendet Entscheidungsbäume mit JEndknoten (= Blätter) als Basislerner. Es gibt eine Reihe von Möglichkeiten, einen Baum mit genau JKnoten zu züchten, zum Beispiel kann man den Baum in der Tiefe zuerst oder in der Breite zuerst züchten, ... Gibt es eine etablierte Methode, …
10 r  cart  boosting 

1
R lineare Regression kategoriale Variable "versteckter" Wert
Dies ist nur ein Beispiel, auf das ich mehrmals gestoßen bin, daher habe ich keine Beispieldaten. Ausführen eines linearen Regressionsmodells in R: a.lm = lm(Y ~ x1 + x2) x1ist eine stetige Variable. x2ist kategorisch und hat drei Werte, z. B. "Niedrig", "Mittel" und "Hoch". Die von R gegebene Ausgabe …
10 r  regression  categorical-data  regression-coefficients  categorical-encoding  machine-learning  random-forest  anova  spss  r  self-study  bootstrap  monte-carlo  r  multiple-regression  partitioning  neural-networks  normalization  machine-learning  svm  kernel-trick  self-study  survival  cox-model  repeated-measures  survey  likert  correlation  variance  sampling  meta-analysis  anova  independence  sample  assumptions  bayesian  covariance  r  regression  time-series  mathematical-statistics  graphical-model  machine-learning  linear-model  kernel-trick  linear-algebra  self-study  moments  function  correlation  spss  probability  confidence-interval  sampling  mean  population  r  generalized-linear-model  prediction  offset  data-visualization  clustering  sas  cart  binning  sas  logistic  causality  regression  self-study  standard-error  r  distributions  r  regression  time-series  multiple-regression  python  chi-squared  independence  sample  clustering  data-mining  rapidminer  probability  stochastic-processes  clustering  binary-data  dimensionality-reduction  svd  correspondence-analysis  data-visualization  excel  c#  hypothesis-testing  econometrics  survey  rating  composite  regression  least-squares  mcmc  markov-process  kullback-leibler  convergence  predictive-models  r  regression  anova  confidence-interval  survival  cox-model  hazard  normal-distribution  autoregressive  mixed-model  r  mixed-model  sas  hypothesis-testing  mediation  interaction 


2
Sind Baumschätzer IMMER voreingenommen?
Ich mache Hausaufgaben zu Entscheidungsbäumen und eine der Fragen, die ich beantworten muss, lautet: "Warum sind Schätzer aus voreingenommenen Bäumen aufgebaut und wie hilft das Absacken, ihre Varianz zu verringern?". Jetzt weiß ich, dass überangepasste Modelle tendenziell eine sehr geringe Verzerrung aufweisen, da sie versuchen, alle Datenpunkte anzupassen. Und ich …
9 cart  bias 

2
Erfassen CART-Bäume Interaktionen zwischen Prädiktoren?
In diesem Artikel wird behauptet, dass in CART, da bei jedem Schritt eine binäre Aufteilung an einer einzelnen Kovariate durchgeführt wird, alle Aufteilungen orthogonal sind und daher Wechselwirkungen zwischen Kovariaten nicht berücksichtigt werden. Viele sehr ernsthafte Referenzen behaupten jedoch im Gegenteil, dass die hierarchische Struktur eines Baums garantiert, dass Interaktionen …

2
Wie bewertet man die Anpassungsgüte für Überlebensfunktionen?
Ich bin ein Neuling in der Überlebensanalyse, obwohl ich einige Kenntnisse in Klassifikation und Regression habe. Für die Regression haben wir MSE- und R-Quadrat-Statistiken. Aber wie können wir sagen, dass das Überlebensmodell A neben einigen grafischen Darstellungen (KM-Kurve) dem Überlebensmodell B überlegen ist? Wenn möglich, erläutern Sie den Unterschied anhand …

1
Wie wähle ich die Anzahl der Teilungen in rpart ()?
Ich habe rpart.controlfür verwendet minsplit=2und habe die folgenden Ergebnisse von der rpart()Funktion erhalten. Muss ich Splits 3 oder Splits 7 verwenden, um eine Überanpassung der Daten zu vermeiden? Sollte ich nicht Splits 7 verwenden? Lass es mich wissen, bitte. Tatsächlich in der Baumkonstruktion verwendete Variablen: [1] ct_a ct_b usr_a Root …
9 r  cart  rpart 

4
Kann eine baumbasierte Regression schlechter abschneiden als eine einfache lineare Regression?
Hallo, ich studiere Regressionstechniken. Meine Daten haben 15 Funktionen und 60 Millionen Beispiele (Regressionsaufgabe). Als ich viele bekannte Regressionstechniken ausprobierte (gradientenverstärkter Baum, Entscheidungsbaumregression, AdaBoostRegressor usw.), lief die lineare Regression hervorragend. Unter diesen Algorithmen fast am besten bewertet. Was kann der Grund dafür sein? Da meine Daten so viele Beispiele enthalten, …

1
Definition der Komplexität eines Baumes in xgboost
Als ich über den xgboost-Algorithmus recherchierte, ging ich die Dokumentation durch . Bei diesem Ansatz werden Bäume unter Verwendung der Komplexitätsdefinition wobei und Parameter sind, die Anzahl von ist Terminalblätter und ist die Punktzahl in jedem Blatt.Ω(f)=γT+12λ∑j=1Tw2jΩ(f)=γT+12λ∑j=1Twj2 \Omega(f) = \gamma T + \frac12 \lambda \sum_{j=1}^T w_j^2 γγ\gammaλλ\lambdaTTTwjwjw_j Ich frage mich: …

2
Wie werden CP-Werte (Cost Complexity) in RPART (oder Entscheidungsbäumen im Allgemeinen) berechnet?
rpartSoweit ich weiß, hilft das Argument cp für die Funktion dabei, den Baum auf die gleiche Weise wie die Argumente minsplit oder minbucket vorab zu bereinigen. Was ich nicht verstehe, ist, wie CP-Werte berechnet werden. Zum Beispiel df<-data.frame(x=c(1,2,3,3,3,4), y=as.factor(c(TRUE, TRUE, FALSE, TRUE, FALSE, FALSE)), method="class") mytree<-rpart(y ~ x, data = …
9 r  cart  rpart 

2
Eine einfache und klare Erklärung der Gini-Verunreinigung?
Im Zusammenhang mit der Aufteilung des Entscheidungsbaums ist nicht ersichtlich, warum die Gini-Verunreinigung vorliegt i ( t ) = 1 -∑j = 1kp2( j | t )i(t)=1−∑j=1kp2(j|t) i(t)=1-\sum\limits_{j=1}^k p^2(j|t) ist ein Maß für die Verunreinigung des Knotens t . Gibt es eine einfache Erklärung dafür?
9 cart  intuition  gini 

2
Führen Entscheidungsbäume eine Aufteilung von Knoten durch, indem sie in der Praxis kategoriale Werte in numerische Werte konvertieren?
Verwenden wir in Entscheidungsbäumen bei der Klassifizierung oder Regression nur numerische Werte? Angenommen, ich habe eine kategoriale Spalte Windals Feature. Angenommen , ich habe am 5 Zeilen (Beobachtungen) und die Werte für Windsind [ high, low, high, medium, medium]. Kann ich diese kategorialen Daten in einen Entscheidungsbaumklassifikator (wie scikit-learn) einspeisen, …


Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.