Als «spss» getaggte Fragen

SPSS ist ein statistisches Softwarepaket. Verwenden Sie dieses Tag für alle themenbezogenen Fragen, bei denen (a) SPSS entweder als kritischer Teil der Frage oder als erwartete Antwort betrachtet wird und (b) nicht nur die Verwendung von SPSS betrifft.

25
Python als Statistik-Workbench
Viele Leute verwenden ein Hauptwerkzeug wie Excel oder ein anderes Arbeitsblatt, SPSS, Stata oder R für ihre Statistikanforderungen. Sie können sich für ganz spezielle Anforderungen an ein bestimmtes Paket wenden, aber eine Menge Dinge können mit einer einfachen Tabelle oder einem allgemeinen Statistikpaket oder einer Statistikprogrammierumgebung erledigt werden. Ich mochte …
355 r  spss  stata  python 

3
Ein Beispiel: LASSO-Regression unter Verwendung von glmnet für binäre Ergebnisse
Ich beginne mit der Verwendung von dabble glmnetmit LASSO Regression , wo mein Ergebnis von Interesse dichotomous ist. Ich habe unten einen kleinen nachgebildeten Datenrahmen erstellt: age <- c(4, 8, 7, 12, 6, 9, 10, 14, 7) gender <- c(1, 0, 1, 1, 1, 0, 1, 0, 0) bmi_p <- …
77 r  self-study  lasso  regression  interpretation  anova  statistical-significance  survey  conditional-probability  independence  naive-bayes  graphical-model  r  time-series  forecasting  arima  r  forecasting  exponential-smoothing  bootstrap  outliers  r  regression  poisson-distribution  zero-inflation  genetic-algorithms  machine-learning  feature-selection  cart  categorical-data  interpretation  descriptive-statistics  variance  multivariate-analysis  covariance-matrix  r  data-visualization  generalized-linear-model  binomial  proportion  pca  matlab  svd  time-series  correlation  spss  arima  chi-squared  curve-fitting  text-mining  zipf  probability  categorical-data  distance  group-differences  bhattacharyya  regression  variance  mean  data-visualization  variance  clustering  r  standard-error  association-measure  somers-d  normal-distribution  integral  numerical-integration  bayesian  clustering  python  pymc  nonparametric-bayes  machine-learning  svm  kernel-trick  hyperparameter  poisson-distribution  mean  continuous-data  univariate  missing-data  dag  python  likelihood  dirichlet-distribution  r  anova  hypothesis-testing  statistical-significance  p-value  rating  data-imputation  censoring  threshold 

3
Wann ist R im Quadrat negativ?
Ich verstehe, dass nicht negativ sein kann, da es das Quadrat von R ist. Ich habe jedoch in SPSS eine einfache lineare Regression mit einer einzelnen unabhängigen Variablen und einer abhängigen Variablen durchgeführt. Meine SPSS-Ausgabe gibt mir einen negativen Wert für . Wenn ich dies von Hand aus R berechnen …



3
Interpretation des log transformierten Prädiktors und / oder der Antwort
Ich frage mich, ob es einen Unterschied in der Interpretation macht, ob nur die abhängigen, sowohl die abhängigen als auch die unabhängigen Variablen oder nur die unabhängigen Variablen log-transformiert werden. Betrachten Sie den Fall von log(DV) = Intercept + B1*IV + Error Ich kann die IV als prozentuale Erhöhung interpretieren, …
46 regression  data-transformation  interpretation  regression-coefficients  logarithm  r  dataset  stata  hypothesis-testing  contingency-tables  hypothesis-testing  statistical-significance  standard-deviation  unbiased-estimator  t-distribution  r  functional-data-analysis  maximum-likelihood  bootstrap  regression  change-point  regression  sas  hypothesis-testing  bayesian  randomness  predictive-models  nonparametric  terminology  parametric  correlation  effect-size  loess  mean  pdf  quantile-function  bioinformatics  regression  terminology  r-squared  pdf  maximum  multivariate-analysis  references  data-visualization  r  pca  r  mixed-model  lme4-nlme  distributions  probability  bayesian  prior  anova  chi-squared  binomial  generalized-linear-model  anova  repeated-measures  t-test  post-hoc  clustering  variance  probability  hypothesis-testing  references  binomial  profile-likelihood  self-study  excel  data-transformation  skewness  distributions  statistical-significance  econometrics  spatial  r  regression  anova  spss  linear-model 

3
Warum gibt es einen Unterschied zwischen der manuellen Berechnung eines Konfidenzintervalls für eine logistische Regression von 95% und der Verwendung der Funktion confint () in R?
Sehr geehrte Damen und Herren, mir ist etwas Merkwürdiges aufgefallen, das ich Ihnen nicht erklären kann. Zusammenfassend lässt sich sagen, dass der manuelle Ansatz zur Berechnung eines Konfidenzintervalls in einem logistischen Regressionsmodell und die R-Funktion confint()unterschiedliche Ergebnisse liefern. Ich habe die angewandte logistische Regression von Hosmer & Lemeshow (2. Auflage) …
34 r  regression  logistic  confidence-interval  profile-likelihood  correlation  mcmc  error  mixture  measurement  data-augmentation  r  logistic  goodness-of-fit  r  time-series  exponential  descriptive-statistics  average  expected-value  data-visualization  anova  teaching  hypothesis-testing  multivariate-analysis  r  r  mixed-model  clustering  categorical-data  unsupervised-learning  r  logistic  anova  binomial  estimation  variance  expected-value  r  r  anova  mixed-model  multiple-comparisons  repeated-measures  project-management  r  poisson-distribution  control-chart  project-management  regression  residuals  r  distributions  data-visualization  r  unbiased-estimator  kurtosis  expected-value  regression  spss  meta-analysis  r  censoring  regression  classification  data-mining  mixture 

5
Umgang mit hierarchischen / verschachtelten Daten beim maschinellen Lernen
Ich werde mein Problem mit einem Beispiel erklären. Angenommen, Sie möchten das Einkommen einer Person anhand einiger Attribute vorhersagen: {Alter, Geschlecht, Land, Region, Stadt}. Sie haben einen Trainingsdatensatz wie diesen train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", "M","F","M","F", "F","F","F","M")), Income=c(31,42,71,65, 50,51,101,38, 47,50,55,23)) …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 

1
Beste Methoden zur Faktorextraktion in der Faktoranalyse
SPSS bietet verschiedene Methoden zur Faktorextraktion an: Hauptkomponenten (die überhaupt keine Faktorenanalyse sind) Ungewichtete kleinste Quadrate Verallgemeinerte kleinste Quadrate Maximale Wahrscheinlichkeit Hauptachse Alpha Factoring Image Factoring Wenn Sie die erste Methode ignorieren, bei der es sich nicht um eine Faktoranalyse (sondern um eine Hauptkomponentenanalyse, PCA) handelt, welche dieser Methoden ist …



1
Berechnung der Wiederholbarkeit von Effekten aus einem früheren Modell
Ich bin gerade auf diese Arbeit gestoßen , in der beschrieben wird, wie die Wiederholbarkeit (auch bekannt als Zuverlässigkeit, auch bekannt als Intraclass-Korrelation) einer Messung über Mixed-Effects-Modellierung berechnet wird. Der R-Code wäre: #fit the model fit = lmer(dv~(1|unit),data=my_data) #obtain the variance estimates vc = VarCorr(fit) residual_var = attr(vc,'sc')^2 intercept_var = …
28 mixed-model  reliability  intraclass-correlation  repeatability  spss  factor-analysis  survey  modeling  cross-validation  error  curve-fitting  mediation  correlation  clustering  sampling  machine-learning  probability  classification  metric  r  project-management  optimization  svm  python  dataset  quality-control  checking  clustering  distributions  anova  factor-analysis  exponential  poisson-distribution  generalized-linear-model  deviance  machine-learning  k-nearest-neighbour  r  hypothesis-testing  t-test  r  variance  levenes-test  bayesian  software  bayesian-network  regression  repeated-measures  least-squares  change-scores  variance  chi-squared  variance  nonlinear-regression  regression-coefficients  multiple-comparisons  p-value  r  statistical-significance  excel  sampling  sample  r  distributions  interpretation  goodness-of-fit  normality-assumption  probability  self-study  distributions  references  theory  time-series  clustering  econometrics  binomial  hypothesis-testing  variance  t-test  paired-comparisons  statistical-significance  ab-test  r  references  hypothesis-testing  t-test  normality-assumption  wilcoxon-mann-whitney  central-limit-theorem  t-test  data-visualization  interactive-visualization  goodness-of-fit 

4
Differenz zwischen Binomial-, Negativ-Binomial- und Poisson-Regression
Ich suche nach Informationen über den Unterschied zwischen Binomial-, Negativ-Binomial- und Poisson-Regression und für welche Situationen sind diese Regressionen am besten geeignet. Gibt es Tests, die ich in SPSS durchführen kann, um festzustellen, welche dieser Regressionen für meine Situation am besten geeignet ist? Wie führe ich in SPSS ein Poisson- …

2
CHAID vs CRT (oder CART)
Ich führe mit SPSS eine Entscheidungsbaumklassifizierung für einen Datensatz mit etwa 20 Prädiktoren durch (kategorial mit wenigen Kategorien). CHAID (Chi-squared Automatic Interaction Detection) und CRT / CART (Classification And Regression Trees) geben mir verschiedene Bäume. Kann jemand die relativen Vorzüge von CHAID vs CRT erklären? Was bedeutet es, eine Methode …
23 spss  cart 

2
Wie gruppiere ich Zeitreihen?
Ich habe eine Frage zur Clusteranalyse. Es gibt 3000 Unternehmen, die nach ihrem Stromverbrauch über 5 Jahre gruppiert werden müssen. Jedes Unternehmen hat Werte für jede Stunde während 5 Jahren. Ich würde gerne herausfinden, ob einige Unternehmen über den Zeitraum die gleiche Nutzungsstärke aufweisen. Die Ergebnisse sollten für die tägliche …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.