Als «scikit-learn» getaggte Fragen

Eine Bibliothek für maschinelles Lernen für Python. Verwenden Sie dieses Tag für alle themenbezogenen Fragen, bei denen (a) Scikit-Learn entweder als kritischer Teil der Frage oder als erwartete Antwort verwendet wird und (b) nicht nur die Verwendung von Scikit-Learn betrifft.


1
R / mgcv: Warum produzieren te () und ti () Tensorprodukte unterschiedliche Oberflächen?
Das mgcvPaket für Rhat zwei Funktionen zum Anpassen von Tensorproduktwechselwirkungen: te()und ti(). Ich verstehe die grundlegende Arbeitsteilung zwischen den beiden (Anpassen einer nichtlinearen Wechselwirkung vs. Zerlegen dieser Wechselwirkung in Haupteffekte und eine Wechselwirkung). Was ich nicht verstehe, ist warum te(x1, x2)und ti(x1) + ti(x2) + ti(x1, x2)kann (leicht) unterschiedliche Ergebnisse …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 

1
Scikit Binomial Deviance Loss-Funktion
Dies ist die Binomial-Deviance-Loss-Funktion von scikit GradientBoosting. def __call__(self, y, pred, sample_weight=None): """Compute the deviance (= 2 * negative log-likelihood). """ # logaddexp(0, v) == log(1.0 + exp(v)) pred = pred.ravel() if sample_weight is None: return -2.0 * np.mean((y * pred) - np.logaddexp(0.0, pred)) else: return (-2.0 / sample_weight.sum() * …

1
Wie prognostizieren wir seltene Ereignisse?
Ich arbeite an der Entwicklung eines Vorhersagemodells für Versicherungsrisiken. Bei diesen Modellen handelt es sich um "seltene Ereignisse" wie No-Show-Vorhersage von Fluggesellschaften, Erkennung von Hardwarefehlern usw. Als ich meinen Datensatz vorbereitete, versuchte ich, eine Klassifizierung anzuwenden, konnte jedoch aufgrund des hohen Anteils negativer Fälle keine nützlichen Klassifizierer erhalten . Ich …

4
Hauptkomponentenanalyse und Regression in Python
Ich versuche herauszufinden, wie ich in Python einige Arbeiten reproduzieren kann, die ich in SAS ausgeführt habe. Mit diesem Datensatz , bei dem Multikollinearität ein Problem darstellt, möchte ich eine Hauptkomponentenanalyse in Python durchführen. Ich habe mir Scikit-Learn- und Statistikmodelle angesehen, bin mir aber nicht sicher, wie ich ihre Ausgabe …


2
Anwenden von PCA auf Testdaten zu Klassifizierungszwecken
Ich habe kürzlich etwas über die wunderbare PCA gelernt und das in der Scikit-Learn-Dokumentation beschriebene Beispiel ausgeführt . Ich bin interessiert zu wissen, wie ich PCA für Klassifizierungszwecke auf neue Datenpunkte anwenden kann. Nachdem ich PCA in einer zweidimensionalen Ebene (x-, y-Achse) visualisiert habe, sehe ich, dass ich wahrscheinlich eine …

1
Random Forest Probabilistic Prediction gegen Mehrheitswahl
Scikit Learn scheint für die Modellaggregationstechnik eine probabilistische Vorhersage anstelle einer Mehrheitsentscheidung zu verwenden, ohne zu erklären, warum (1.9.2.1. Random Forests). Gibt es eine klare Erklärung dafür, warum? Gibt es außerdem ein gutes Papier oder einen Übersichtsartikel für die verschiedenen Modellaggregationstechniken, die für das Absacken von Random Forest verwendet werden …

2
Die Ausgabe von Scikit SVM in der Klassifizierung mehrerer Klassen ergibt immer die gleiche Bezeichnung
Ich verwende derzeit Scikit Learn mit dem folgenden Code: clf = svm.SVC(C=1.0, tol=1e-10, cache_size=600, kernel='rbf', gamma=0.0, class_weight='auto') und passen Sie dann einen Datensatz mit 7 verschiedenen Beschriftungen an und sagen Sie ihn voraus. Ich habe eine seltsame Ausgabe. Unabhängig davon, welche Kreuzvalidierungstechnik ich verwende, wird das vorhergesagte Etikett auf dem …

1
Wie baue ich einen innovativen Ausreißer bei Beobachtung 48 in mein ARIMA-Modell ein?
Ich arbeite an einem Datensatz. Nachdem ich einige Modellidentifikationstechniken angewendet hatte, kam ich mit einem ARIMA (0,2,1) -Modell heraus. Ich habe die detectIOFunktion im Paket TSAin R verwendet, um bei der 48. Beobachtung meines ursprünglichen Datensatzes einen innovativen Ausreißer (IO) zu erkennen . Wie kann ich diesen Ausreißer in mein …
10 r  time-series  arima  outliers  hypergeometric  fishers-exact  r  time-series  intraclass-correlation  r  logistic  glmm  clogit  mixed-model  spss  repeated-measures  ancova  machine-learning  python  scikit-learn  distributions  data-transformation  stochastic-processes  web  standard-deviation  r  machine-learning  spatial  similarities  spatio-temporal  binomial  sparse  poisson-process  r  regression  nonparametric  r  regression  logistic  simulation  power-analysis  r  svm  random-forest  anova  repeated-measures  manova  regression  statistical-significance  cross-validation  group-differences  model-comparison  r  spatial  model-evaluation  parallel-computing  generalized-least-squares  r  stata  fitting  mixture  hypothesis-testing  categorical-data  hypothesis-testing  anova  statistical-significance  repeated-measures  likert  wilcoxon-mann-whitney  boxplot  statistical-significance  confidence-interval  forecasting  prediction-interval  regression  categorical-data  stata  least-squares  experiment-design  skewness  reliability  cronbachs-alpha  r  regression  splines  maximum-likelihood  modeling  likelihood-ratio  profile-likelihood  nested-models 

1
Was ist der Unterschied zwischen Entscheidungsfunktion, Vorhersagefunktion und Vorhersagefunktion für das logistische Regressionsproblem?
Ich habe die sklearn-Dokumentation durchgearbeitet, kann jedoch den Zweck dieser Funktionen im Kontext der logistischen Regression nicht verstehen. Denn decision_functiones heißt, dass es der Abstand zwischen der Hyperebene und der Testinstanz ist. Wie sind diese speziellen Informationen nützlich? und wie hängt das mit predictund predict-probamethoden zusammen?

3
Identifizieren gefilterter Features nach Feature-Auswahl mit scikit learn
Hier ist mein Code für die Feature-Auswahlmethode in Python: from sklearn.svm import LinearSVC from sklearn.datasets import load_iris iris = load_iris() X, y = iris.data, iris.target X.shape (150, 4) X_new = LinearSVC(C=0.01, penalty="l1", dual=False).fit_transform(X, y) X_new.shape (150, 3) Aber nachdem ich neues X (abhängige Variable - X_new) erhalten habe, woher weiß …

2
Implementierung einer verschachtelten Kreuzvalidierung
Ich versuche herauszufinden, ob mein Verständnis der verschachtelten Kreuzvalidierung korrekt ist. Deshalb habe ich dieses Spielzeugbeispiel geschrieben, um zu sehen, ob ich Recht habe: import operator import numpy as np from sklearn import cross_validation from sklearn import ensemble from sklearn.datasets import load_boston # set random state state = 1 # …

4
Zeitdiskretes Ereignisverlaufsmodell (Überlebensmodell) in R.
Ich versuche, ein zeitdiskretes Modell in R einzubauen, bin mir aber nicht sicher, wie ich das machen soll. Ich habe gelesen, dass Sie die abhängige Variable in verschiedenen Zeilen organisieren können, eine für jede glmZeitbeobachtung , und die Funktion mit einem Logit- oder Cloglog-Link verwenden können. In diesem Sinne, ich …
10 r  survival  pca  sas  matlab  neural-networks  r  logistic  spatial  spatial-interaction-model  r  time-series  econometrics  var  statistical-significance  t-test  cross-validation  sample-size  r  regression  optimization  least-squares  constrained-regression  nonparametric  ordinal-data  wilcoxon-signed-rank  references  neural-networks  jags  bugs  hierarchical-bayesian  gaussian-mixture  r  regression  svm  predictive-models  libsvm  scikit-learn  probability  self-study  stata  sample-size  spss  wilcoxon-mann-whitney  survey  ordinal-data  likert  group-differences  r  regression  anova  mathematical-statistics  normal-distribution  random-generation  truncation  repeated-measures  variance  variability  distributions  random-generation  uniform  regression  r  generalized-linear-model  goodness-of-fit  data-visualization  r  time-series  arima  autoregressive  confidence-interval  r  time-series  arima  autocorrelation  seasonality  hypothesis-testing  bayesian  frequentist  uninformative-prior  correlation  matlab  cross-correlation 

2
Was ist "Verbose" im Scikit-Learn-Paket von Python? [geschlossen]
Geschlossen. Diese Frage ist nicht zum Thema . Derzeit werden keine Antworten akzeptiert. Möchten Sie diese Frage verbessern? Aktualisieren Sie die Frage so dass es beim Thema für Kreuz Validated. Geschlossen vor 2 Jahren . Was ist "Verbose" im scikit-learnPython-Paket? In einigen Modellen wie Neural Network und SVM können wir …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.