Als «pca» getaggte Fragen

Die Hauptkomponentenanalyse (PCA) ist eine lineare Dimensionsreduktionstechnik. Es reduziert ein multivariates Dataset auf einen kleineren Satz konstruierter Variablen, wobei so viele Informationen (so viel Varianz) wie möglich erhalten bleiben. Diese Variablen, Hauptkomponenten genannt, sind lineare Kombinationen der Eingangsvariablen.

1
Warum geben die R-Funktionen 'princomp' und 'prcomp' unterschiedliche Eigenwerte an?
Sie können den Zehnkampf-Datensatz {FactoMineR} verwenden, um dies zu reproduzieren. Die Frage ist, warum sich die berechneten Eigenwerte von denen der Kovarianzmatrix unterscheiden. Hier sind die Eigenwerte mit princomp: > library(FactoMineR);data(decathlon) > pr <- princomp(decathlon[1:10], cor=F) > pr$sd^2 Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 1.348073e+02 2.293556e+01 9.747263e+00 1.117215e+00 3.477705e-01 1.326819e-01 …
22 r  pca 

2
Die Grenze des Ridge-Regressionsschätzers für "Einheitsvarianz", wenn
Betrachten Sie die Ridge-Regression mit einer zusätzlichen Einschränkung, die voraussetzt, dass eine Einheitssumme von Quadraten hat (entsprechend eine Einheitsvarianz). Bei Bedarf kann man davon ausgehen, dass eine Einheitssumme von Quadraten hat:y^y^\hat{\mathbf y}yy\mathbf y β^∗λ=argmin{∥y−Xβ∥2+λ∥β∥2}s.t.∥Xβ∥2=1.β^λ∗=arg⁡min{‖y−Xβ‖2+λ‖β‖2}s.t.‖Xβ‖2=1.\hat{\boldsymbol\beta}_\lambda^* = \arg\min\Big\{\|\mathbf y - \mathbf X \boldsymbol \beta\|^2+\lambda\|\boldsymbol\beta\|^2\Big\} \:\:\text{s.t.}\:\: \|\mathbf X \boldsymbol\beta\|^2=1. Was ist die Grenze …


3
Seltsame Korrelationen in den SVD-Ergebnissen von Zufallsdaten; Haben sie eine mathematische Erklärung oder handelt es sich um einen LAPACK-Fehler?
Ich beobachte ein sehr seltsames Verhalten beim SVD-Ergebnis von Zufallsdaten, das ich sowohl in Matlab als auch in R reproduzieren kann. Es scheint ein numerisches Problem in der LAPACK-Bibliothek zu sein. ist es? Ich ziehe Proben aus dem dimensionalen Gaußschen mit dem Mittelwert Null und der Identitätskovarianz: . Ich setze …

4
Funktionale Hauptkomponentenanalyse (FPCA): Worum geht es?
Über die Funktionale Hauptkomponentenanalyse (FPCA) bin ich gestolpert und habe sie nie verstanden. Worum geht es? Siehe "Eine Übersicht über die Analyse der funktionalen Hauptkomponenten" von Shang, 2011 , und ich zitiere: PCA stößt bei der Analyse von Funktionsdaten aufgrund des "Fluches der Dimensionalität" auf ernsthafte Schwierigkeiten (Bellman 1961). Der …

4
Wie projiziert man einen neuen Vektor auf den PCA-Raum?
Nach der Durchführung der Hauptkomponentenanalyse (PCA) möchte ich einen neuen Vektor auf den PCA-Raum projizieren (dh seine Koordinaten im PCA-Koordinatensystem finden). Ich habe PCA in R-Sprache mit berechnet prcomp. Jetzt sollte ich meinen Vektor mit der PCA-Rotationsmatrix multiplizieren können. Sollen die Hauptkomponenten in dieser Matrix in Zeilen oder Spalten angeordnet …
21 r  pca  r  variance  heteroscedasticity  misspecification  distributions  time-series  data-visualization  modeling  histogram  kolmogorov-smirnov  negative-binomial  likelihood-ratio  econometrics  panel-data  categorical-data  scales  survey  distributions  pdf  histogram  correlation  algorithms  r  gpu  parallel-computing  approximation  mean  median  references  sample-size  normality-assumption  central-limit-theorem  rule-of-thumb  confidence-interval  estimation  mixed-model  psychometrics  random-effects-model  hypothesis-testing  sample-size  dataset  large-data  regression  standard-deviation  variance  approximation  hypothesis-testing  variance  central-limit-theorem  kernel-trick  kernel-smoothing  error  sampling  hypothesis-testing  normality-assumption  philosophical  confidence-interval  modeling  model-selection  experiment-design  hypothesis-testing  statistical-significance  power  asymptotics  information-retrieval  anova  multiple-comparisons  ancova  classification  clustering  factor-analysis  psychometrics  r  sampling  expectation-maximization  markov-process  r  data-visualization  correlation  regression  statistical-significance  degrees-of-freedom  experiment-design  r  regression  curve-fitting  change-point  loess  machine-learning  classification  self-study  monte-carlo  markov-process  references  mathematical-statistics  data-visualization  python  cart  boosting  regression  classification  robust  cart  survey  binomial  psychometrics  likert  psychology  asymptotics  multinomial 

2
Kann PCA für Zeitreihendaten angewendet werden?
Ich verstehe, dass die Hauptkomponentenanalyse (PCA) grundsätzlich für Querschnittsdaten angewendet werden kann. Kann PCA effektiv für Zeitreihendaten verwendet werden, indem Jahr als Zeitreihenvariable angegeben wird und PCA normal ausgeführt wird? Ich habe festgestellt, dass dynamisches PCA für Paneldaten funktioniert und die Codierung in Stata für Paneldaten und nicht für Zeitreihen …
21 time-series  pca 

1
Was ist der "Hufeiseneffekt" und / oder der "Bogeneffekt" in der PCA / Korrespondenzanalyse?
In der ökologischen Statistik gibt es viele Techniken zur explorativen Datenanalyse mehrdimensionaler Daten. Dies nennt man "Ordinations" -Techniken. Viele sind die gleichen oder eng mit gängigen Techniken in anderen Bereichen der Statistik verwandt. Vielleicht wäre das prototypische Beispiel die Hauptkomponentenanalyse (PCA). Ökologen könnten PCA und verwandte Techniken verwenden, um „Farbverläufe“ …

2
Gibt es einen Vorteil von SVD gegenüber PCA?
Ich weiß, wie man PCA und SVD mathematisch berechnet, und ich weiß, dass beide auf die lineare Regression der kleinsten Quadrate angewendet werden können. Der Hauptvorteil von SVD scheint mathematisch zu sein, dass es auf nicht quadratische Matrizen angewendet werden kann. Beide konzentrieren sich auf die Zerlegung der Matrix. Gibt …
20 pca  least-squares  svd 

2
Methoden zur Berechnung von Faktor-Scores und wie lautet die Matrix für den „Score-Koeffizienten“ in der PCA- oder Faktoranalyse?
Nach meinem Verständnis erhalten wir in PCA basierend auf Korrelationen Faktor- (= Hauptkomponente in diesem Fall) Belastungen, die nichts anderes als die Korrelationen zwischen Variablen und Faktoren sind. Wenn ich jetzt Faktor-Scores in SPSS generieren muss , kann ich die Faktor-Scores jedes Befragten für jeden Faktor direkt abrufen. Ich habe …

3
Ich bekomme in Rollapply PCA in R "nervöse" Ladungen. Kann ich das beheben?
Ich habe 10 Jahre tägliche Rückgabedaten für 28 verschiedene Währungen. Ich möchte die erste Hauptkomponente extrahieren, aber anstatt PCA für die gesamten 10 Jahre zu betreiben, möchte ich ein 2-Jahres-Zeitfenster einhalten, da sich das Verhalten der Währungen verändert und ich dies reflektieren möchte. Ich habe jedoch ein großes Problem: Sowohl …
20 r  pca 

6
PCA von nicht-Gaußschen Daten
Ich habe ein paar kurze Fragen zu PCA: Geht die PCA davon aus, dass der Datensatz Gaußsch ist? Was passiert, wenn ich eine PCA auf inhärent nichtlineare Daten anwende? Bei einem gegebenen Datensatz besteht der Prozess darin, zunächst die Mittelwerte zu normalisieren, die Varianz auf 1 zu setzen, eine SVD …
20 pca  svd 

4
Was sind die korrekten Werte für Präzision und Rückruf in Randfällen?
Präzision ist definiert als: p = true positives / (true positives + false positives) Ist es richtig, dass sich die Genauigkeit 1 nähert true positivesund false positivessich 0 nähert? Gleiche Frage zum Rückruf: r = true positives / (true positives + false negatives) Ich führe derzeit einen statistischen Test durch, …
20 precision-recall  data-visualization  logarithm  references  r  networks  data-visualization  standard-deviation  probability  binomial  negative-binomial  r  categorical-data  aggregation  plyr  survival  python  regression  r  t-test  bayesian  logistic  data-transformation  confidence-interval  t-test  interpretation  distributions  data-visualization  pca  genetics  r  finance  maximum  probability  standard-deviation  probability  r  information-theory  references  computational-statistics  computing  references  engineering-statistics  t-test  hypothesis-testing  independence  definition  r  censoring  negative-binomial  poisson-distribution  variance  mixed-model  correlation  intraclass-correlation  aggregation  interpretation  effect-size  hypothesis-testing  goodness-of-fit  normality-assumption  small-sample  distributions  regression  normality-assumption  t-test  anova  confidence-interval  z-statistic  finance  hypothesis-testing  mean  model-selection  information-geometry  bayesian  frequentist  terminology  type-i-and-ii-errors  cross-validation  smoothing  splines  data-transformation  normality-assumption  variance-stabilizing  r  spss  stata  python  correlation  logistic  logit  link-function  regression  predictor  pca  factor-analysis  r  bayesian  maximum-likelihood  mcmc  conditional-probability  statistical-significance  chi-squared  proportion  estimation  error  shrinkage  application  steins-phenomenon 

2
PCA in Numpy und Sklearn führt zu unterschiedlichen Ergebnissen
Verstehe ich etwas falsch? Das ist mein Code mit sklearn import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn import decomposition from sklearn import datasets from sklearn.preprocessing import StandardScaler pca = decomposition.PCA(n_components=3) x = np.array([ [0.387,4878, 5.42], [0.723,12104,5.25], [1,12756,5.52], [1.524,6787,3.94], ]) pca.fit_transform(x) Ausgabe: array([[ -4.25324997e+03, …


Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.