Als «mixed-model» getaggte Fragen

Gemischte (auch als mehrstufige oder hierarchische) Modelle sind lineare Modelle, die sowohl feste als auch zufällige Effekte enthalten. Sie werden verwendet, um longitudinale oder verschachtelte Daten zu modellieren.

2
P-Wert für den Interaktionsterm in Modellen mit gemischten Effekten unter Verwendung von lme4
Ich analysiere einige Verhaltensdaten mit lme4in R, hauptsächlich nach Bodo Winters hervorragenden Tutorials , aber ich verstehe nicht, ob ich mit Interaktionen richtig umgehe. Schlimmer noch, niemand anderes, der an dieser Forschung beteiligt ist, verwendet gemischte Modelle. Ich bin also ein bisschen treibend, wenn es darum geht, sicherzustellen, dass die …



1
R lineare Regression kategoriale Variable "versteckter" Wert
Dies ist nur ein Beispiel, auf das ich mehrmals gestoßen bin, daher habe ich keine Beispieldaten. Ausführen eines linearen Regressionsmodells in R: a.lm = lm(Y ~ x1 + x2) x1ist eine stetige Variable. x2ist kategorisch und hat drei Werte, z. B. "Niedrig", "Mittel" und "Hoch". Die von R gegebene Ausgabe …
10 r  regression  categorical-data  regression-coefficients  categorical-encoding  machine-learning  random-forest  anova  spss  r  self-study  bootstrap  monte-carlo  r  multiple-regression  partitioning  neural-networks  normalization  machine-learning  svm  kernel-trick  self-study  survival  cox-model  repeated-measures  survey  likert  correlation  variance  sampling  meta-analysis  anova  independence  sample  assumptions  bayesian  covariance  r  regression  time-series  mathematical-statistics  graphical-model  machine-learning  linear-model  kernel-trick  linear-algebra  self-study  moments  function  correlation  spss  probability  confidence-interval  sampling  mean  population  r  generalized-linear-model  prediction  offset  data-visualization  clustering  sas  cart  binning  sas  logistic  causality  regression  self-study  standard-error  r  distributions  r  regression  time-series  multiple-regression  python  chi-squared  independence  sample  clustering  data-mining  rapidminer  probability  stochastic-processes  clustering  binary-data  dimensionality-reduction  svd  correspondence-analysis  data-visualization  excel  c#  hypothesis-testing  econometrics  survey  rating  composite  regression  least-squares  mcmc  markov-process  kullback-leibler  convergence  predictive-models  r  regression  anova  confidence-interval  survival  cox-model  hazard  normal-distribution  autoregressive  mixed-model  r  mixed-model  sas  hypothesis-testing  mediation  interaction 


3
Modell für die Behandlung von Redundanzen mit zufälligen Effekten
Ich versuche, mit einer Time-to-Event-Analyse unter Verwendung wiederholter binärer Ergebnisse umzugehen. Angenommen, die Zeit bis zum Ereignis wird in Tagen gemessen, aber im Moment diskretisieren wir die Zeit auf Wochen. Ich möchte einen Kaplan-Meier-Schätzer mit wiederholten binären Ergebnissen approximieren (aber Kovariaten berücksichtigen). Dies scheint ein Umweg zu sein, aber ich …

3
Was tun mit einer Korrelation mit zufälligen Effekten, die gleich 1 oder -1 ist?
Das nicht so seltene Auftreten bei komplexen maximal gemischten Modellen (Schätzung aller möglichen zufälligen Effekte für bestimmte Daten und Modelle) ist eine perfekte (+1 oder -1) oder nahezu perfekte Korrelation zwischen einigen zufälligen Effekten. Betrachten wir zum Zweck der Diskussion das folgende Modell und die folgende Modellzusammenfassung Model: Y ~ …

1
Welches Deep-Learning-Modell kann Kategorien klassifizieren, die sich nicht gegenseitig ausschließen?
Beispiele: Ich habe einen Satz in der Stellenbeschreibung: "Java Senior Engineer in UK". Ich möchte ein Deep-Learning-Modell verwenden, um es als zwei Kategorien vorherzusagen: English und IT jobs. Wenn ich ein traditionelles Klassifizierungsmodell verwende, kann es nur 1 Etikett mit softmaxFunktion auf der letzten Ebene vorhersagen . Somit kann ich …
9 machine-learning  deep-learning  natural-language  tensorflow  sampling  distance  non-independent  application  regression  machine-learning  logistic  mixed-model  control-group  crossover  r  multivariate-analysis  ecology  procrustes-analysis  vegan  regression  hypothesis-testing  interpretation  chi-squared  bootstrap  r  bioinformatics  bayesian  exponential  beta-distribution  bernoulli-distribution  conjugate-prior  distributions  bayesian  prior  beta-distribution  covariance  naive-bayes  smoothing  laplace-smoothing  distributions  data-visualization  regression  probit  penalized  estimation  unbiased-estimator  fisher-information  unbalanced-classes  bayesian  model-selection  aic  multiple-regression  cross-validation  regression-coefficients  nonlinear-regression  standardization  naive-bayes  trend  machine-learning  clustering  unsupervised-learning  wilcoxon-mann-whitney  z-score  econometrics  generalized-moments  method-of-moments  machine-learning  conv-neural-network  image-processing  ocr  machine-learning  neural-networks  conv-neural-network  tensorflow  r  logistic  scoring-rules  probability  self-study  pdf  cdf  classification  svm  resampling  forecasting  rms  volatility-forecasting  diebold-mariano  neural-networks  prediction-interval  uncertainty 

2
Wie lässt sich der durchschnittliche Behandlungseffekt in einer Längsschnittstudie am besten abschätzen?
In einer Längsschnittstudie werden die Ergebnisse der Einheiten zu Zeitpunkten mit insgesamt festen Messanlässen wiederholt gemessen (fest = Messungen an Einheiten werden gleichzeitig durchgeführt). i t mY.i tYitY_{it}ichiitttmmm Die Einheiten werden zufällig entweder einer Behandlung oder einer Kontrollgruppe . Ich möchte den durchschnittlichen Effekt der Behandlung abschätzen und testen, dh …


1
Anova Typ III Test für ein GLMM
Ich passe ein glmerModell in das lme4R-Paket. Ich suche nach einer Anova-Tabelle mit dem darin gezeigten p-Wert, kann aber kein passendes Paket finden. Ist es möglich, es in R zu tun? Das Modell, das ich anpasse, hat folgende Form: model1<-glmer(dmn~period*teethTreated+(1|fullName), family="poisson", data=subset(dataset, group=='Four times a year'), control=glmerControl(optimizer="bobyqa"))



2
Parametrisches, semiparametrisches und nichtparametrisches Bootstrapping für gemischte Modelle
Die folgenden Transplantate stammen aus diesem Artikel . Ich bin ein Neuling im Bootstrap und versuche, das parametrische, semiparametrische und nichtparametrische Bootstrapping-Bootstrapping für ein lineares gemischtes Modell mit R bootPaket zu implementieren. R-Code Hier ist mein RCode: library(SASmixed) library(lme4) library(boot) fm1Cult <- lmer(drywt ~ Inoc + Cult + (1|Block) + …
9 r  mixed-model  bootstrap  central-limit-theorem  stable-distribution  time-series  hypothesis-testing  markov-process  r  correlation  categorical-data  association-measure  meta-analysis  r  anova  confidence-interval  lm  r  bayesian  multilevel-analysis  logit  regression  logistic  least-squares  eda  regression  notation  distributions  random-variable  expected-value  distributions  markov-process  hidden-markov-model  r  variance  group-differences  microarray  r  descriptive-statistics  machine-learning  references  r  regression  r  categorical-data  random-forest  data-transformation  data-visualization  interactive-visualization  binomial  beta-distribution  time-series  forecasting  logistic  arima  beta-regression  r  time-series  seasonality  large-data  unevenly-spaced-time-series  correlation  statistical-significance  normalization  population  group-differences  demography 

2
Anpassen eines gemischten Poisson GLM-Modells mit zufälliger Steigung und Achsenabschnitt
Ich arbeite derzeit an einer Reihe von Poisson-Zeitreihenmodellen, die versuchen, den Effekt einer Änderung der Art und Weise, wie die Zählungen erhalten wurden (Wechsel von einem Diagnosetest zu einem anderen), abzuschätzen und gleichzeitig andere Trends im Laufe der Zeit zu kontrollieren (z. B. eine allgemeine Zunahme der Inzidenz von Krankheiten). …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.