Als «primal-dual» getaggte Fragen

1
Spielzeugbeispiele für Plotkin-Shmoys-Tardos- und Arora-Kale-Löser
Ich möchte verstehen, wie der Arora-Kale-SDP-Löser die Goemans-Williamson-Relaxation in nahezu linearer Zeit approximiert, wie der Plotkin-Shmoys-Tardos-Löser gebrochene "Packungs-" und "Deckungsprobleme" in nahezu linearer Zeit approximiert und wie die Algorithmen sind Instanzen des abstrakten Frameworks "Lernen von Experten". Die Arbeit von Kale hat eine ausgezeichnete Präsentation, aber ich finde es sehr …

2
Ein intuitiver / informeller Beweis für LP Duality?
Was wäre ein guter informeller / intuitiver Beweis, um die LP-Dualität auf den Punkt zu bringen? Wie lässt sich am besten zeigen, dass die minimierte Zielfunktion tatsächlich das Minimum ist, wenn man die Schranke auf intuitive Weise versteht? Die Art und Weise, wie mir Dualität beigebracht wurde, führte nur zu …

5
Ist es möglich zu testen, ob eine berechenbare Zahl rational oder ganzzahlig ist?
Ist es möglich, algorithmisch zu testen, ob eine berechenbare Zahl rational oder ganzzahlig ist? Mit anderen Worten, könnte eine Bibliothek, die berechenbare Zahlen implementiert, die Funktionen bereitstellen, isIntegeroder isRational? Ich vermute, dass es nicht möglich ist und dass dies irgendwie damit zusammenhängt, dass es nicht möglich ist, zu testen, ob …
18 computability  computing-over-reals  lambda-calculus  graph-theory  co.combinatorics  cc.complexity-theory  reference-request  graph-theory  proofs  np-complete  cc.complexity-theory  machine-learning  boolean-functions  combinatory-logic  boolean-formulas  reference-request  approximation-algorithms  optimization  cc.complexity-theory  co.combinatorics  permutations  cc.complexity-theory  cc.complexity-theory  ai.artificial-intel  p-vs-np  relativization  co.combinatorics  permutations  ds.algorithms  algebra  automata-theory  dfa  lo.logic  temporal-logic  linear-temporal-logic  circuit-complexity  lower-bounds  permanent  arithmetic-circuits  determinant  dc.parallel-comp  asymptotics  ds.algorithms  graph-theory  planar-graphs  physics  max-flow  max-flow-min-cut  fl.formal-languages  automata-theory  finite-model-theory  dfa  language-design  soft-question  machine-learning  linear-algebra  db.databases  arithmetic-circuits  ds.algorithms  machine-learning  ds.data-structures  tree  soft-question  security  project-topic  approximation-algorithms  linear-programming  primal-dual  reference-request  graph-theory  graph-algorithms  cr.crypto-security  quantum-computing  gr.group-theory  graph-theory  time-complexity  lower-bounds  matrices  sorting  asymptotics  approximation-algorithms  linear-algebra  matrices  max-cut  graph-theory  graph-algorithms  time-complexity  circuit-complexity  regular-language  graph-algorithms  approximation-algorithms  set-cover  clique  graph-theory  graph-algorithms  approximation-algorithms  clustering  partition-problem  time-complexity  turing-machines  term-rewriting-systems  cc.complexity-theory  time-complexity  nondeterminism 

1
Reicht es aus, wenn lineare Programmeinschränkungen in der Erwartung erfüllt werden?
In der Arbeit Randomized Primal-Dual-Analyse von RANKING für Online Bipartite Matching zeigen die Autoren, dass der RANKING- Algorithmus -kompetitiv ist Erwartung (siehe Lemma 3 auf Seite 5). Meine Frage ist:( 1 - 1e)(1-1e)\left(1 - \frac{1}{e}\right) Reicht es aus, wenn lineare Programmeinschränkungen in der Erwartung erfüllt werden? Es ist eine Sache …

2
Verallgemeinerung des ungarischen Algorithmus auf allgemeine ungerichtete Graphen?
Der ungarische Algorithmus ist ein kombinatorischer Optimierungsalgorithmus, der das Problem der bipartiten Anpassung mit maximalem Gewicht in der Polynomzeit löst und die spätere Entwicklung der wichtigen Primal-Dual-Methode vorwegnimmt . Der Algorithmus wurde 1955 von Harold Kuhn entwickelt und veröffentlicht, der den Namen "Ungarischer Algorithmus" erhielt, da der Algorithmus auf den …

3
Wann ist die Dualitätslücke der semidefiniten Programmierung (SDP) Null?
Ich konnte in der Literatur keine genaue Charakterisierung des Verschwindens der SDP-Dualitätslücke finden. Oder wann gilt "starke Dualität"? Wenn man zum Beispiel zwischen dem Lasserre und dem SOS SDP hin und her geht, hat man im Prinzip eine Dualitätslücke. Irgendwie scheint es jedoch einen "trivialen" Grund zu geben, warum diese …

1
Warum ist komplementäre Schlaffheit wichtig?
Komplementäre Schlaffheit (CS) wird häufig gelehrt, wenn über Dualität gesprochen wird. Es stellt eine gute Beziehung zwischen der ursprünglichen und der doppelten Einschränkung / Variablen aus mathematischer Sicht her. Die zwei Hauptgründe für die Anwendung von CS (wie in Kursen und Lehrbüchern für Hochschulabsolventen gelehrt): Um die Optimalität der LP …
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.