Als «unevenly-spaced-time-series» getaggte Fragen

Zeitreihen, die zu ungleichmäßigen (oder unregelmäßigen) verteilten Zeitpunkten abgetastet oder gemessen wurden.

8
Gibt es einen Goldstandard für die Modellierung von Zeitreihen mit unregelmäßigen Abständen?
Im Bereich der Ökonomie (glaube ich) gibt es ARIMA und GARCH für regelmäßig verteilte Zeitreihen und Poisson, Hawkes für die Modellierung von Punktprozessen. Wie wäre es also mit Versuchen, unregelmäßig (ungleichmäßig) verteilte Zeitreihen zu modellieren - gibt es (zumindest) gängige Vorgehensweisen ? (Wenn Sie etwas über dieses Thema wissen, können …

3
Verwenden des R-Vorhersagepakets mit fehlenden Werten und / oder unregelmäßigen Zeitreihen
Ich bin beeindruckt vom R- forecastPaket, sowie zB dem zooPaket für unregelmäßige Zeitreihen und Interpolation fehlender Werte. Meine Anwendung liegt im Bereich der Callcenter-Verkehrsprognose, daher fehlen (fast) immer Daten an den Wochenenden, die gut verarbeitet werden können zoo. Außerdem können einige diskrete Punkte fehlen, ich benutze einfach Rs NAdafür. Die …



3
RNN für unregelmäßige Zeitintervalle?
RNNs eignen sich bemerkenswert gut zur Erfassung der Zeitabhängigkeit sequentieller Daten. Was passiert jedoch, wenn die Sequenzelemente nicht zeitlich gleich verteilt sind? Beispielsweise erfolgt die erste Eingabe in die LSTM-Zelle am Montag, dann keine Daten von Dienstag bis Donnerstag und schließlich neue Eingaben für jeden Freitag, Samstag, Sonntag. Eine Möglichkeit …


1
Asynchrone (unregelmäßige) Zeitreihenanalyse
Ich versuche, die Vorlaufverzögerung zwischen Zeitreihen zweier Aktienkurse zu analysieren. In der regelmäßigen Zeitreihenanalyse können wir Cross Correlaton, VECM (Granger Causality) durchführen. Wie geht man jedoch in unregelmäßig verteilten Zeitreihen damit um? Die Hypothese ist, dass eines der Instrumente das andere führt. Ich habe Daten für beide Symbole in Mikrosekunden. …


1
Wie korreliere ich zwei Zeitreihen mit Lücken und unterschiedlichen Zeitbasen?
Ich habe diese Frage bei StackOverflow gestellt und wurde empfohlen, sie hier zu stellen. Ich habe zwei Zeitreihen von 3D-Beschleunigungsmesserdaten, die unterschiedliche Zeitbasen haben (Uhren wurden zu unterschiedlichen Zeiten gestartet, mit einem sehr geringen Kriechen während der Abtastzeit) sowie viele Lücken unterschiedlicher Größe (aufgrund von Verzögerungen beim Schreiben zum Trennen) …

2
Parametrisches, semiparametrisches und nichtparametrisches Bootstrapping für gemischte Modelle
Die folgenden Transplantate stammen aus diesem Artikel . Ich bin ein Neuling im Bootstrap und versuche, das parametrische, semiparametrische und nichtparametrische Bootstrapping-Bootstrapping für ein lineares gemischtes Modell mit R bootPaket zu implementieren. R-Code Hier ist mein RCode: library(SASmixed) library(lme4) library(boot) fm1Cult <- lmer(drywt ~ Inoc + Cult + (1|Block) + …
9 r  mixed-model  bootstrap  central-limit-theorem  stable-distribution  time-series  hypothesis-testing  markov-process  r  correlation  categorical-data  association-measure  meta-analysis  r  anova  confidence-interval  lm  r  bayesian  multilevel-analysis  logit  regression  logistic  least-squares  eda  regression  notation  distributions  random-variable  expected-value  distributions  markov-process  hidden-markov-model  r  variance  group-differences  microarray  r  descriptive-statistics  machine-learning  references  r  regression  r  categorical-data  random-forest  data-transformation  data-visualization  interactive-visualization  binomial  beta-distribution  time-series  forecasting  logistic  arima  beta-regression  r  time-series  seasonality  large-data  unevenly-spaced-time-series  correlation  statistical-significance  normalization  population  group-differences  demography 


3
Trend bei unregelmäßigen Zeitreihendaten
Ich habe einen Datensatz mit Wassertemperaturmessungen, die über einen Zeitraum von Jahrzehnten in unregelmäßigen Abständen an einem großen Wasserkörper durchgeführt wurden. (Galveston Bay, TX, wenn Sie interessiert sind) Hier ist der Kopf der Daten: STATION_ID DATE TIME LATITUDE LONGITUDE YEAR MONTH DAY SEASON MEASUREMENT 1 13296 6/20/91 11:04 29.50889 -94.75806 …

1
Vorhersage unregelmäßiger Zeitreihen (mit R)
Es gibt verschiedene Methoden, um Vorhersagen für äquidistante Zeitreihen zu treffen (z. B. Holt-Winters, ARIMA, ...). Derzeit arbeite ich jedoch an dem folgenden Datensatz mit unregelmäßigen Abständen, der eine unterschiedliche Anzahl von Datenpunkten pro Jahr und keine regelmäßigen Zeitintervalle zwischen diesen Punkten aufweist: Plot: Beispieldaten: structure(list(date = structure(c(664239600, 665449200, 666658800, …

3
Post-hoc-Test in einer 2x3-ANOVA mit gemischtem Design unter Verwendung von SPSS?
Ich habe zwei Gruppen von 10 Teilnehmern, die während eines Experiments dreimal bewertet wurden. Um die Unterschiede zwischen den Gruppen und zwischen den drei Bewertungen zu testen, führte ich eine 2 × 3-ANOVA mit gemischtem Design mit group(Kontrolle, experimentell), time(erste, zweite, drei) und group x time. Beides timeund groupErgebnis signifikant, …
8 anova  mixed-model  spss  post-hoc  bonferroni  time-series  unevenly-spaced-time-series  classification  normal-distribution  discriminant-analysis  probability  normal-distribution  estimation  sampling  classification  svm  terminology  pivot-table  random-generation  self-study  estimation  sampling  estimation  categorical-data  maximum-likelihood  excel  least-squares  instrumental-variables  2sls  total-least-squares  correlation  self-study  variance  unbiased-estimator  bayesian  mixed-model  ancova  statistical-significance  references  p-value  fishers-exact  probability  monte-carlo  particle-filter  logistic  predictive-models  modeling  interaction  survey  hypothesis-testing  multiple-regression  regression  variance  data-transformation  residuals  minitab  r  time-series  forecasting  arima  garch  correlation  estimation  least-squares  bias  pca  predictive-models  genetics  sem  partial-least-squares  nonparametric  ordinal-data  wilcoxon-mann-whitney  bonferroni  wilcoxon-signed-rank  traminer  regression  econometrics  standard-error  robust  misspecification  r  probability  logistic  generalized-linear-model  r-squared  effect-size  gee  ordered-logit  bayesian  classification  svm  kernel-trick  nonlinear  bayesian  pca  dimensionality-reduction  eigenvalues  probability  distributions  mathematical-statistics  estimation  nonparametric  kernel-smoothing  expected-value  filter  mse  time-series  correlation  data-visualization  clustering  estimation  predictive-models  recommender-system  sparse  hypothesis-testing  data-transformation  parametric  probability  summations  correlation  pearson-r  spearman-rho  bayesian  replicability  dimensionality-reduction  discriminant-analysis  outliers  weka 

1
Wo soll ich anfangen?: Zeitreihen mit ungleichmäßigen Abständen, mit vielen Ausreißern oder Zufälligkeiten
Ich weiß nicht genau, was möglich ist, und möchte einen Zeiger in die richtige Richtung. Ich habe Zeit- und Positionsmessungen, die von einer Person, die läuft, einem Fahrzeug auf einer Straße, einem Parkplatz oder einem Drucker in einem Büro stammen können. Ich muss die Fahrzeiten für Fahrzeuge zwischen zwei Punkten …
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.