Als «intuition» getaggte Fragen

Fragen, die ein konzeptionelles oder nicht mathematisches Verständnis der Statistik anstreben.



3
Intuition und Verwendung für Variationskoeffizienten
Ich nehme derzeit am Kurs Eine Einführung in das Betriebsmanagement in Coursera.org teil. Irgendwann im Kurs begann der Professor, sich mit Variationen in der Operationszeit zu befassen. Die Messung, die er verwendet, ist der Variationskoeffizient , das Verhältnis zwischen der Standardabweichung und dem Mittelwert: cv=σμcv=σμc_v = \frac{\sigma}{\mu} Warum sollte diese …

2
Wie kann man ein Faltungsnetzwerk mit tiefem Glauben für die Audioklassifizierung verstehen?
In " Convolutional Deep Believe Networks für skalierbares unbeaufsichtigtes Lernen hierarchischer Repräsentationen " von Lee et. al. ( PDF ) Faltungs-DBNs werden vorgeschlagen. Auch das Verfahren wird zur Bildklassifizierung ausgewertet. Dies klingt logisch, da es natürliche lokale Bildmerkmale wie kleine Ecken und Kanten usw. gibt. In " Unüberwachtes Feature-Lernen für …

1
R / mgcv: Warum produzieren te () und ti () Tensorprodukte unterschiedliche Oberflächen?
Das mgcvPaket für Rhat zwei Funktionen zum Anpassen von Tensorproduktwechselwirkungen: te()und ti(). Ich verstehe die grundlegende Arbeitsteilung zwischen den beiden (Anpassen einer nichtlinearen Wechselwirkung vs. Zerlegen dieser Wechselwirkung in Haupteffekte und eine Wechselwirkung). Was ich nicht verstehe, ist warum te(x1, x2)und ti(x1) + ti(x2) + ti(x1, x2)kann (leicht) unterschiedliche Ergebnisse …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 

2
Was ist die Intuition hinter einem wiederkehrenden neuronalen Netzwerk mit langem Kurzzeitgedächtnis (LSTM)?
Die Idee hinter Recurrent Neural Network (RNN) ist mir klar. Ich verstehe es folgendermaßen: Wir haben eine Folge von Beobachtungen ( Ö⃗ 1, o⃗ 2, … , O.⃗ no→1,o→2,…,o→n\vec o_1, \vec o_2, \dots, \vec o_n ) (oder mit anderen Worten multivariate Zeitreihen). Jede einzelne Beobachtung Ö⃗ icho→i\vec o_i ist ein …

2
Kolmogorov-Smirnov-Test: Die Statistik des p-Werts und des ks-Tests nimmt mit zunehmender Stichprobengröße ab
Warum nehmen p-Werte und ks-Teststatistiken mit zunehmender Stichprobengröße ab? Nehmen Sie diesen Python-Code als Beispiel: import numpy as np from scipy.stats import norm, ks_2samp np.random.seed(0) for n in [10, 100, 1000, 10000, 100000, 1000000]: x = norm(0, 4).rvs(n) y = norm(0, 4.1).rvs(n) print ks_2samp(x, y) Die Ergebnisse sind: Ks_2sampResult(statistic=0.30000000000000004, pvalue=0.67507815371659508) …



1
Intuitive Erklärung für die inverse Wahrscheinlichkeit von Behandlungsgewichten (IPTWs) bei der Neigungsbewertung?
Ich verstehe die Mechanik der Gewichte der Berechnung der Neigung unter Verwendung von Partituren : und dann Anwenden der Gewichte in einer Regressionsanalyse, zu der die Gewichte dienen "Kontrolle für" oder Trennung der Wirkungen von Kovariaten in den Populationen der Behandlungs- und Kontrollgruppe mit der Ergebnisvariablen.p(xi)p(xi)p(x_i)wi,j=treatwi,j=control=1p(xi)=11−p(xi)wi,j=treat=1p(xi)wi,j=control=11−p(xi)\begin{align} w_{i, j={\rm treat}} &= …

2
Kullback-Leibler-Divergenz für zwei Proben
Ich habe versucht, eine numerische Schätzung der Kullback-Leibler-Divergenz für zwei Stichproben zu implementieren. Um die Implementierung zu debuggen, ziehen Sie die Stichproben aus zwei Normalverteilungen und N ( 1 , 2 ) .N.( 0 , 1 )N(0,1)\mathcal N (0,1)N.( 1 , 2 )N(1,2)\mathcal N (1,2) Für eine einfache Schätzung habe …

1
Warum ist ( wird zensiert)
In einem Problemsatz habe ich dieses "Lemma" bewiesen, dessen Ergebnis für mich nicht intuitiv ist. ist eine Standardnormalverteilung in einem zensierten Modell.ZZZ Formal ist und . Dann Es besteht also eine Verbindung zwischen der Erwartungsformel über einer abgeschnittenen Domäne und der Dichte am Punkt der Kürzung . Könnte jemand die …

2
Geeignete Maßnahme, um die kleinste Kovarianzmatrix zu finden
In dem Lehrbuch, das ich lese, verwenden sie positive Bestimmtheit (halbpositive Bestimmtheit), um zwei Kovarianzmatrizen zu vergleichen. Die Idee ist, dass wenn pd ist, kleiner als . Aber ich kämpfe darum, die Intuition dieser Beziehung zu bekommen?A−BA−BA-BBBBAAA Hier gibt es einen ähnlichen Thread: /math/239166/what-is-the-intuition-for-using-definiteness-to-compare-matrices Was ist die Intuition für die …


3
Zentraler Grenzwertsatz und Pareto-Verteilung
Kann jemand bitte eine einfache (Laien-) Erklärung der Beziehung zwischen Pareto-Verteilungen und dem zentralen Grenzwertsatz geben (z. B. gilt sie? Warum / warum nicht?)? Ich versuche die folgende Aussage zu verstehen: "Der zentrale Grenzwertsatz funktioniert nicht mit jeder Verteilung. Dies liegt an einer hinterhältigen Tatsache: Stichprobenmittelwerte werden um den Mittelwert …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.