Als «forecasting» getaggte Fragen

Vorhersage der zukünftigen Ereignisse. Es ist ein Sonderfall von [Vorhersage] im Kontext von [Zeitreihen].


2
Wie verwendet man eine einfache exponentielle Glättung in R?
Ich bin Anfänger in R, Könnten Sie bitte erklären, wie man ses im Prognosepaket der R- Prognose verwendet ? Ich möchte die Anzahl der Anfangsperioden und die Glättungskonstante wählen. d <- c(3,4,41,10,9,86,56,20,18,36,24,59,82,51,31,29,13,7,26,19,20,103,141,145,24,99,40,51,72,58,94,78,11,15,17,53,44,34,12,15,32,14,15,26,75,110,56,43,19,17,33,26,40,42,18,24,69,18,18,25,86,106,104,35,43,12,4,20,16,8) Ich habe 70 Perioden, ich möchte 40 Perioden für die anfängliche und 30 für die Out-of-Sample verwenden. ses(d, …

1
Wie kann man beobachtete mit erwarteten Ereignissen vergleichen?
Angenommen, ich habe eine Stichprobe von Häufigkeiten von 4 möglichen Ereignissen: Event1 - 5 E2 - 1 E3 - 0 E4 - 12 und ich habe die erwarteten Wahrscheinlichkeiten, dass meine Ereignisse eintreten: p1 - 0.2 p2 - 0.1 p3 - 0.1 p4 - 0.6 Mit der Summe der beobachteten …
9 r  statistical-significance  chi-squared  multivariate-analysis  exponential  joint-distribution  statistical-significance  self-study  standard-deviation  probability  normal-distribution  spss  interpretation  assumptions  cox-model  reporting  cox-model  statistical-significance  reliability  method-comparison  classification  boosting  ensemble  adaboost  confidence-interval  cross-validation  prediction  prediction-interval  regression  machine-learning  svm  regularization  regression  sampling  survey  probit  matlab  feature-selection  information-theory  mutual-information  time-series  forecasting  simulation  classification  boosting  ensemble  adaboost  normal-distribution  multivariate-analysis  covariance  gini  clustering  text-mining  distance-functions  information-retrieval  similarities  regression  logistic  stata  group-differences  r  anova  confidence-interval  repeated-measures  r  logistic  lme4-nlme  inference  fiducial  kalman-filter  classification  discriminant-analysis  linear-algebra  computing  statistical-significance  time-series  panel-data  missing-data  uncertainty  probability  multivariate-analysis  r  classification  spss  k-means  discriminant-analysis  poisson-distribution  average  r  random-forest  importance  probability  conditional-probability  distributions  standard-deviation  time-series  machine-learning  online  forecasting  r  pca  dataset  data-visualization  bayes  distributions  mathematical-statistics  degrees-of-freedom 




2
Parametrisches, semiparametrisches und nichtparametrisches Bootstrapping für gemischte Modelle
Die folgenden Transplantate stammen aus diesem Artikel . Ich bin ein Neuling im Bootstrap und versuche, das parametrische, semiparametrische und nichtparametrische Bootstrapping-Bootstrapping für ein lineares gemischtes Modell mit R bootPaket zu implementieren. R-Code Hier ist mein RCode: library(SASmixed) library(lme4) library(boot) fm1Cult <- lmer(drywt ~ Inoc + Cult + (1|Block) + …
9 r  mixed-model  bootstrap  central-limit-theorem  stable-distribution  time-series  hypothesis-testing  markov-process  r  correlation  categorical-data  association-measure  meta-analysis  r  anova  confidence-interval  lm  r  bayesian  multilevel-analysis  logit  regression  logistic  least-squares  eda  regression  notation  distributions  random-variable  expected-value  distributions  markov-process  hidden-markov-model  r  variance  group-differences  microarray  r  descriptive-statistics  machine-learning  references  r  regression  r  categorical-data  random-forest  data-transformation  data-visualization  interactive-visualization  binomial  beta-distribution  time-series  forecasting  logistic  arima  beta-regression  r  time-series  seasonality  large-data  unevenly-spaced-time-series  correlation  statistical-significance  normalization  population  group-differences  demography 


1
Wie kombiniere ich die Prognosen, wenn die Antwortvariable in Prognosemodellen unterschiedlich war?
Einführung In der Prognosekombination basiert eine der beliebtesten Lösungen auf der Anwendung einiger Informationskriterien. Wenn man zum Beispiel das für das Modell geschätzte Akaike-Kriterium , könnte man die Differenzen von von und dann könnte RP_j = e ^ {(AIC ^ * - AIC_j) / 2} interpretiert werden als die relative …

3
Wie mache ich Prognosen für eine Zeitreihe?
Ich bin mit der Analyse von Zeitreihendaten nicht so vertraut. Ich denke jedoch, dass es sich um eine einfache Vorhersageaufgabe handelt. Ich habe ungefähr fünf Jahre Daten aus einem gemeinsamen Generierungsprozess. Jedes Jahr repräsentiert eine monoton ansteigende Funktion mit einer nichtlinearen Komponente. Ich habe Zählungen für jede Woche über einen …

2
Wie identifiziere ich Übertragungsfunktionen in einem Zeitreihen-Regressionsprognosemodell?
Ich versuche, ein Zeitreihen-Regressionsprognosemodell für eine Ergebnisvariable in US-Dollar in Bezug auf andere Prädiktoren / Eingabevariablen und autokorrelierte Fehler zu erstellen. Diese Art von Modell wird auch als dynamisches Regressionsmodell bezeichnet. Ich muss lernen, wie man Übertragungsfunktionen für jeden Prädiktor identifiziert, und würde gerne von Ihnen hören, wie Sie genau …


2
Unterschied zwischen zeitverzögerten neuronalen Netzen und wiederkehrenden neuronalen Netzen
Ich möchte ein neuronales Netzwerk verwenden, um finanzielle Zeitreihen vorherzusagen. Ich komme aus einem IT-Umfeld und habe einige Kenntnisse über neuronale Netze. Ich habe darüber gelesen: TDNN RNN Ich habe nach R-Paketen für sie gesucht und nur eines für RNN gefunden, das RSNNS-Paket, das Elman- und Jordan-Implementierungen enthält, die RNN …



Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.