Als «estimation» getaggte Fragen

Dieses Tag ist zu allgemein; Bitte geben Sie ein genaueres Tag an. Verwenden Sie stattdessen bei Fragen zu den Eigenschaften bestimmter Schätzer das Tag [Schätzer].

3
So erhalten Sie das Konfidenzintervall für die Änderung des Populations-R-Quadrats
Als einfaches Beispiel wird angenommen, dass es zwei lineare Regressionsmodelle gibt Modell 1 hat drei Prädiktoren x1a, x2bundx2c Modell 2 hat drei Prädiktoren aus Modell 1 und zwei zusätzliche Prädiktoren x2aundx2b Es gibt eine Populationsregressionsgleichung, bei der die erklärte Populationsvarianz für Modell 1 für Modell 2 . Die durch Modell …


1
Statistiken für maschinelles Lernen, Papiere zum Starten?
Ich habe einen Hintergrund in Computerprogrammierung und elementarer Zahlentheorie, aber kein wirkliches Statistik-Training und habe kürzlich "entdeckt", dass die erstaunliche Welt einer ganzen Reihe von Techniken tatsächlich eine statistische Welt ist. Es scheint, dass Matrixfaktorisierungen, Matrixvervollständigung, hochdimensionale Tensoren, Einbettungen, Dichteschätzung, Bayes'sche Inferenz, Markov-Partitionen, Eigenvektorberechnung und PageRank hochgradig statistische Techniken sind …

1
Long-Tailed-Verteilung von Zeitereignissen
Angenommen, Sie haben die Protokolle eines Webservers. In diesen Protokollen haben Sie Tupel dieser Art: user1, timestamp1 user1, timestamp2 user1, timestamp3 user2, timestamp4 user1, timestamp5 ... Diese Zeitstempel repräsentieren zB die Klicks der Benutzer. user1Besuchen Sie die Site jetzt mehrmals (Sitzungen) im Laufe des Monats, und Sie erhalten während jeder …

1
Warum haben Anova () und drop1 () unterschiedliche Antworten für GLMMs geliefert?
Ich habe ein GLMM der Form: lmer(present? ~ factor1 + factor2 + continuous + factor1*continuous + (1 | factor3), family=binomial) Wenn ich benutze drop1(model, test="Chi"), erhalte ich andere Ergebnisse als wenn ich Anova(model, type="III")aus dem Autopaket oder benutze summary(model). Diese beiden letzteren geben die gleichen Antworten. Unter Verwendung einer Reihe …
10 r  anova  glmm  r  mixed-model  bootstrap  sample-size  cross-validation  roc  auc  sampling  stratification  random-allocation  logistic  stata  interpretation  proportion  r  regression  multiple-regression  linear-model  lm  r  cross-validation  cart  rpart  logistic  generalized-linear-model  econometrics  experiment-design  causality  instrumental-variables  random-allocation  predictive-models  data-mining  estimation  contingency-tables  epidemiology  standard-deviation  mean  ancova  psychology  statistical-significance  cross-validation  synthetic-data  poisson-distribution  negative-binomial  bioinformatics  sequence-analysis  distributions  binomial  classification  k-means  distance  unsupervised-learning  euclidean  correlation  chi-squared  spearman-rho  forecasting  excel  exponential-smoothing  binomial  sample-size  r  change-point  wilcoxon-signed-rank  ranks  clustering  matlab  covariance  covariance-matrix  normal-distribution  simulation  random-generation  bivariate  standardization  confounding  z-statistic  forecasting  arima  minitab  poisson-distribution  negative-binomial  poisson-regression  overdispersion  probability  self-study  markov-process  estimation  maximum-likelihood  classification  pca  group-differences  chi-squared  survival  missing-data  contingency-tables  anova  proportion 

1
Ist der Stichprobenmittelwert in gewissem Sinne die „beste“ Schätzung des Verteilungsmittelwerts?
Nach dem (schwachen / starken) Gesetz großer Zahlen bedeutet ihre Stichprobe bei einigen iid-Stichprobenpunkten einer Verteilung f ∗ ( { x i , i = 1 , …). , N } ) : = 1{xi∈Rn,i=1,…,N}{xi∈Rn,i=1,…,N}\{x_i \in \mathbb{R}^n, i=1,\ldots,N\}f∗({xi,i=1,…,N}):=1N∑Ni=1xif∗({xi,i=1,…,N}):=1N∑i=1Nxif^*(\{x_i, i=1,\ldots,N\}):=\frac{1}{N} \sum_{i=1}^N x_i konvergiert sowohl in der Wahrscheinlichkeit als auch als zum …

3
Wahrscheinlichkeit eines Ereignisses, das nicht messbar ist
Wir wissen aus der Maßtheorie, dass es Ereignisse gibt, die nicht gemessen werden können, dh sie sind nicht nach Lebesgue messbar. Wie nennen wir ein Ereignis mit einer Wahrscheinlichkeit, für die das Wahrscheinlichkeitsmaß nicht definiert ist? Welche Aussagen würden wir zu einem solchen Ereignis machen?


3
Wie schätze ich Parameter für die abgeschnittene Zipf-Verteilung aus einer Datenprobe?
Ich habe ein Problem mit dem Schätzparameter für Zipf. Meine Situation ist folgende: Ich habe einen Beispielsatz (gemessen aus einem Experiment, das Aufrufe generiert, die einer Zipf-Verteilung folgen sollten). Ich muss zeigen, dass dieser Generator wirklich Anrufe mit zipf-Verteilung generiert. Ich habe diese Fragen und Antworten bereits gelesen. Wie berechnet …

3
Schätzung des Exponentialmodells
Ein Exponentialmodell ist ein Modell, das durch die folgende Gleichung beschrieben wird: yi^=β0⋅eβ1x1i+…+βkxkiyi^=β0⋅eβ1x1i+…+βkxki\hat{y_{i}}=\beta_{0}\cdot e^{\beta_{1}x_{1i}+\ldots+\beta_{k}x_{ki}} Der gebräuchlichste Ansatz zur Schätzung eines solchen Modells ist die Linearisierung, die leicht durch Berechnung der Logarithmen beider Seiten durchgeführt werden kann. Was sind die anderen Ansätze? Ich interessiere mich besonders für diejenigen, die in einigen …


1
Unvoreingenommener Schätzer mit minimaler Varianz für
Sei eine Zufallsstichprobe aus einer Verteilung für . DhX1,...,XnX1,...,Xn X_1, ...,X_nGeometric(θ)Geometric(θ)Geometric(\theta)0&lt;θ&lt;10&lt;θ&lt;10<\theta<1 pθ(x)=θ(1−θ)x−1I{1,2,...}(x)pθ(x)=θ(1−θ)x−1I{1,2,...}(x)p_{\theta}(x)=\theta(1-\theta)^{x-1} I_{\{1,2,...\}}(x) Finden Sie den unverzerrten Schätzer mit der minimalen Varianz fürg(θ)=1θg(θ)=1θg(\theta)=\frac{1}{\theta} Mein Versuch: Da die geometrische Verteilung aus der Exponentialfamilie stammt, ist die Statistik vollständig und für ausreichend . Auch wenn ein Schätzer für , ist es unverzerrt. …


3
Schätzung des Parameters einer gleichmäßigen Verteilung: falsch vor?
Wir haben N Proben, , aus einer gleichmäßigen Verteilung wobei unbekannt ist. Schätzen Sie aus den Daten.XiXiX_i[0,θ][0,θ][0,\theta]θθ\thetaθθ\theta Also, Bayes 'Regel ... f(θ|Xi)=f(Xi|θ)f(θ)f(Xi)f(θ|Xi)=f(Xi|θ)f(θ)f(Xi)f(\theta | {X_i}) = \frac{f({X_i}|\theta)f(\theta)}{f({X_i})} und die Wahrscheinlichkeit ist: f(Xi|θ)=∏Ni=11θf(Xi|θ)=∏i=1N1θf({X_i}|\theta) = \prod_{i=1}^N \frac{1}{\theta} (bearbeiten: wenn für alle und 0 sonst - danke whuber)0≤Xi≤θ0≤Xi≤θ0 \le X_i \le \thetaiii aber ohne …


Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.