Als «determinant» getaggte Fragen

2
Untergrenze für Determinante und Permanent
In Anbetracht der jüngsten Kluft bei Tiefe-3 ergibt sich (was unter anderem eine Tiefen-3-Arithmetikschaltung für die Determinante über ergibt ), Ich habe folgende Fragen: Grigoriev und Karpinski haben eine Untergrenze für jede arithmetische Tiefen-3-Schaltung bewiesen, die die Determinante von Matrizen über endlichen Feldern berechnet (was ich vermute, gilt auch für …

5
Ist es möglich zu testen, ob eine berechenbare Zahl rational oder ganzzahlig ist?
Ist es möglich, algorithmisch zu testen, ob eine berechenbare Zahl rational oder ganzzahlig ist? Mit anderen Worten, könnte eine Bibliothek, die berechenbare Zahlen implementiert, die Funktionen bereitstellen, isIntegeroder isRational? Ich vermute, dass es nicht möglich ist und dass dies irgendwie damit zusammenhängt, dass es nicht möglich ist, zu testen, ob …
18 computability  computing-over-reals  lambda-calculus  graph-theory  co.combinatorics  cc.complexity-theory  reference-request  graph-theory  proofs  np-complete  cc.complexity-theory  machine-learning  boolean-functions  combinatory-logic  boolean-formulas  reference-request  approximation-algorithms  optimization  cc.complexity-theory  co.combinatorics  permutations  cc.complexity-theory  cc.complexity-theory  ai.artificial-intel  p-vs-np  relativization  co.combinatorics  permutations  ds.algorithms  algebra  automata-theory  dfa  lo.logic  temporal-logic  linear-temporal-logic  circuit-complexity  lower-bounds  permanent  arithmetic-circuits  determinant  dc.parallel-comp  asymptotics  ds.algorithms  graph-theory  planar-graphs  physics  max-flow  max-flow-min-cut  fl.formal-languages  automata-theory  finite-model-theory  dfa  language-design  soft-question  machine-learning  linear-algebra  db.databases  arithmetic-circuits  ds.algorithms  machine-learning  ds.data-structures  tree  soft-question  security  project-topic  approximation-algorithms  linear-programming  primal-dual  reference-request  graph-theory  graph-algorithms  cr.crypto-security  quantum-computing  gr.group-theory  graph-theory  time-complexity  lower-bounds  matrices  sorting  asymptotics  approximation-algorithms  linear-algebra  matrices  max-cut  graph-theory  graph-algorithms  time-complexity  circuit-complexity  regular-language  graph-algorithms  approximation-algorithms  set-cover  clique  graph-theory  graph-algorithms  approximation-algorithms  clustering  partition-problem  time-complexity  turing-machines  term-rewriting-systems  cc.complexity-theory  time-complexity  nondeterminism 

1
Implikationen der Approximation der Determinante
Es ist bekannt, dass man die Determinante einer n×nn×nn\times n Matrix im deterministischen -Raum genau berechnen kann . Welche Komplexitätsauswirkungen hätte die Approximation der Determinante einer reellen Matrix, von höchstens ( ) im randomisierten logarithmischen Raum, also eines Genauigkeit?1 ‖ A ‖ ≤ 1log2(n)log2⁡(n)\log^2(n)111∥A∥≤1‖A‖≤1\left\|A\right\|\leq 11/poly1/poly1/\text{poly} Was wäre in dieser Hinsicht …



2
Gaußsche Eliminierung in Bezug auf Gruppenaktionen
Die Gaußsche Eliminierung macht die Determinante einer Matrixpolynomzeit berechenbar. Die Verringerung der Komplexität bei der Berechnung der Determinante, die ansonsten die Summe der Exponentialausdrücke ist, beruht auf dem Vorhandensein alternativer negativer Vorzeichen (deren Fehlen die Berechnung permanent macht, ist #P-hard#P-hard \#P\mbox{-}hard dh härter als NP-CNP-CNP\mbox{-}C Probleme). . Dies führt zu …


2
Determinanten und Matrixmultiplikation - Ähnlichkeit und Unterschiede in der algorithmischen Komplexität und der Größe der arithmetischen Schaltung
Ich versuche die Beziehung zwischen algorithmischer Komplexität und Schaltungskomplexität von Determinanten und Matrixmultiplikation zu verstehen. Es ist bekannt, dass die Determinante einer Matrix in ˜ O ( M ( n ) ) -Zeit berechnet werden kann , wobei M ( n ) die minimale Zeit ist, die erforderlich ist, um …

2
Stornierung und Determinante
Der Berkowitz-Algorithmus liefert eine Polynomgrößenschaltung mit logarithmischer Tiefe zur Determinante einer quadratischen Matrix unter Verwendung von Matrixleistungen. Der Algorithmus verwendet implizit die Löschung. Ist eine Aufhebung wesentlich, um eine Schaltung mit Polynomgröße mit logarithmischer oder linearer Tiefe zu erhalten, um die Determinante (und eine mögliche beste Schaltung für Permanent) zu …
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.