Ich bin daran interessiert, die Anzahl signifikanter Muster zu bestimmen, die aus einer Hauptkomponentenanalyse (PCA) oder einer empirischen Orthogonalfunktionsanalyse (EOF) hervorgehen. Ich bin besonders daran interessiert, diese Methode auf Klimadaten anzuwenden. Das Datenfeld ist eine MxN-Matrix, wobei M die Zeitdimension (z. B. Tage) und N die räumliche Dimension (z. B. …
Ich frage mich, ob jemand allgemeine Faustregeln in Bezug auf die Anzahl der zu verwendenden Bootstrap-Beispiele kennt, basierend auf den Merkmalen der Daten (Anzahl der Beobachtungen usw.) und / oder den enthaltenen Variablen.
Ich habe versucht, MCMC-Methoden zu erlernen und bin auf Stichproben von Metropolis Hastings, Gibbs, Wichtigkeit und Ablehnung gestoßen. Während einige dieser Unterschiede offensichtlich sind, dh wie Gibbs ein Sonderfall von Metropolis Hastings ist, wenn wir die vollständigen Bedingungen haben, sind die anderen weniger offensichtlich, wenn wir MH in einem Gibbs-Sampler …
Gibt es eine Simulationsmethode, die nicht Monte Carlo ist? Bei allen Simulationsmethoden werden Zufallszahlen in die Funktion eingesetzt, um einen Wertebereich für die Funktion zu finden. Sind also alle Simulationsmethoden im Wesentlichen Monte-Carlo-Methoden?
Ich habe mir kürzlich die Monte-Carlo-Simulation angesehen und sie verwendet, um Konstanten wie (Kreis in einem Rechteck, proportionale Fläche) anzunähern.ππ\pi Ich kann mir jedoch keine entsprechende Methode vorstellen, um den Wert von [Eulers Zahl] mithilfe der Monte-Carlo-Integration zu approximieren .eee Haben Sie Hinweise, wie dies getan werden kann?
Ich versuche verschiedene Kreuzvalidierungsmethoden zu erlernen, hauptsächlich mit der Absicht, sie auf überwachte multivariate Analysetechniken anzuwenden. Zwei, auf die ich gestoßen bin, sind K-Fold- und Monte-Carlo-Kreuzvalidierungstechniken. Ich habe gelesen, dass K-Fold eine Variation von Monte Carlo ist, aber ich bin mir nicht sicher, was genau die Definition von Monte Carlo …
Beim Integrieren einer Funktion oder in komplexen Simulationen habe ich gesehen, dass die Monte-Carlo-Methode weit verbreitet ist. Ich frage mich, warum man kein Punktegitter erzeugt, um eine Funktion zu integrieren, anstatt zufällige Punkte zu zeichnen. Würde das nicht genauere Ergebnisse bringen?
Ich versuche, Bestärkungslernen zu lernen und dieses Thema ist für mich wirklich verwirrend. Ich habe eine Einführung in die Statistik genommen, konnte dieses Thema aber nicht intuitiv verstehen.
Aufgrund der geringen Kenntnisse, die ich über MCMC-Methoden (Markov-Kette Monte Carlo) habe, verstehe ich, dass die Probenahme ein entscheidender Teil der oben genannten Technik ist. Die am häufigsten verwendeten Stichprobenverfahren sind Hamilton und Metropolis. Gibt es eine Möglichkeit, maschinelles Lernen oder sogar Tiefenlernen zu nutzen, um einen effizienteren MCMC-Sampler zu …
Nach der Durchführung der Hauptkomponentenanalyse (PCA) möchte ich einen neuen Vektor auf den PCA-Raum projizieren (dh seine Koordinaten im PCA-Koordinatensystem finden). Ich habe PCA in R-Sprache mit berechnet prcomp. Jetzt sollte ich meinen Vektor mit der PCA-Rotationsmatrix multiplizieren können. Sollen die Hauptkomponenten in dieser Matrix in Zeilen oder Spalten angeordnet …
Wenn bekannte Dichten sind, aus denen ich simulieren kann, dh für die ein Algorithmus verfügbar ist. und wenn das Produkt integrierbar ist, gibt es einen generischen Ansatz, um aus dieser Produktdichte unter Verwendung von zu simulieren Simulatoren aus dem 's?k ∏ i = 1 f i ( x ) α …
Ich versuche, MCMC auf ein Problem anzuwenden, aber meine Prioritäten (in meinem Fall ) sind auf einen Bereich beschränkt? Kann ich normales MCMC verwenden und die Samples ignorieren, die außerhalb der eingeschränkten Zone liegen (in meinem Fall [0,1] ^ 2), dh die Übergangsfunktion wiederverwenden, wenn der neue Übergang aus einem …
Ich möchte Samples aus der hier definierten blauen Region generieren: Die naive Lösung besteht darin, eine Zurückweisungsabtastung im Einheitenquadrat zu verwenden, dies liefert jedoch nur einen Wirkungsgrad von (~ 21,4%).1−π/41−π/41-\pi/4 Gibt es eine Möglichkeit, wie ich effizienter probieren kann?
Ich verstehe den Algorithmus wie folgt: No U-Turn Sampler (NUTS) ist eine Hamilton-Monte-Carlo-Methode. Dies bedeutet, dass es sich nicht um eine Markov-Kettenmethode handelt und dieser Algorithmus daher den Random-Walk-Teil vermeidet, der häufig als ineffizient und langsam konvergierend angesehen wird. Anstatt den Zufallsrundgang zu machen, macht NUTS Sprünge der Länge x. …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.