Als «conditional-probability» getaggte Fragen

Die Wahrscheinlichkeit, dass ein Ereignis A eintritt, wenn bekannt ist, dass ein anderes Ereignis B eintritt oder eingetreten ist. Es wird üblicherweise mit P (A | B) bezeichnet.

2
Warum nicht den Bayes-Satz in der Form
Es gibt viele Fragen (wie diese ) über eine Mehrdeutigkeit mit der Bayes'schen Formel im kontinuierlichen Fall. p(θ|x)=p(x|θ)⋅p(θ)p(x)p(θ|x)=p(x|θ)⋅p(θ)p(x)p(\theta | x) = \frac{p(x | \theta) \cdot p(\theta)}{p(x)} Oft entsteht Verwirrung aus der Tatsache , dass Definition der bedingten Verteilung wird erklärt , wie ist abhängig von festen gegebenen .f(variable|parameter)f(variable|parameter)f(variable | parameter) …

2
Lokproblem mit Firmen unterschiedlicher Größe
Ich arbeite an Think Bayes (kostenlos hier: http://www.greenteapress.com/thinkbayes/ ) und mache Übung 3.1. Hier ist eine Zusammenfassung des Problems: "Eine Eisenbahn nummeriert ihre Lokomotiven in der Reihenfolge 1..N. Eines Tages sehen Sie eine Lokomotive mit der Nummer 60. Schätzen Sie, wie viele Lokomotiven die Eisenbahn hat." Diese Lösung wird mit …


1
Bedingte Erwartung einer verkürzten RV-Ableitung, Gumbelverteilung (logistischer Unterschied)
Ich habe zwei Zufallsvariablen, die unabhängig und identisch verteilt sind, dh :ϵ1,ϵ0∼iidGumbel(μ,β)ϵ1,ϵ0∼iidGumbel(μ,β)\epsilon_{1}, \epsilon_{0} \overset{\text{iid}}{\sim} \text{Gumbel}(\mu,\beta) F(ϵ)=exp(−exp(−ϵ−μβ)),F(ϵ)=exp⁡(−exp⁡(−ϵ−μβ)),F(\epsilon) = \exp(-\exp(-\frac{\epsilon-\mu}{\beta})), f(ϵ)=1βexp(−(ϵ−μβ+exp(−ϵ−μβ))).f(ϵ)=1βexp⁡(−(ϵ−μβ+exp⁡(−ϵ−μβ))).f(\epsilon) = \dfrac{1}{\beta}\exp(-\left(\frac{\epsilon-\mu}{\beta}+\exp(-\frac{\epsilon-\mu}{\beta})\right)). Ich versuche zwei Größen zu berechnen: Eϵ1Eϵ0|ϵ1[c+ϵ1|c+ϵ1&gt;ϵ0]Eϵ1Eϵ0|ϵ1[c+ϵ1|c+ϵ1&gt;ϵ0]\mathbb{E}_{\epsilon_{1}}\mathbb{E}_{\epsilon_{0}|\epsilon_{1}}\left[c+\epsilon_{1}|c+\epsilon_{1}>\epsilon_{0}\right] Eϵ1Eϵ0|ϵ1[ϵ0|c+ϵ1&lt;ϵ0]Eϵ1Eϵ0|ϵ1[ϵ0|c+ϵ1&lt;ϵ0]\mathbb{E}_{\epsilon_{1}}\mathbb{E}_{\epsilon_{0}|\epsilon_{1}}\left[\epsilon_{0}|c+\epsilon_{1}<\epsilon_{0}\right] Ich komme zu einem Punkt, an dem ich eine Integration für etwas in der Form durchführen muss: eexeexe^{e^{x}} , das in …

1
Berechnung der bedingten Erwartung an
Ich habe nicht wirklich gesehen, dass Wahrscheinlichkeitsbücher die bedingte Erwartung berechnen, außer für σσ\sigma Algebren, die durch eine diskrete Zufallsvariable erzeugt werden. Sie geben einfach die Existenz der bedingten Erwartung zusammen mit ihren Eigenschaften an und belassen sie dabei. Ich finde das etwas ärgerlich und versuche, eine Methode zu finden, …


3
Welche Beziehung besteht zwischen Ereignis und Zufallsvariable?
Mir wurde gesagt, dass ein Ereignis nur eine Zufallsvariable ist, die zugewiesen wurde, und dass Zufallsvariablen eine Verallgemeinerung von Ereignissen sind. Ich kann dies jedoch nicht mit der Definition eines Ereignisses als Teilmenge des Probenraums in Verbindung bringen . Darüber hinaus kann ein Ereignis entweder eintreten oder nicht, während eine …




2
Gesamterwartungssatz für Poisson-Prozesse
Ich habe zwei unabhängige Poisson-Prozesse und mit den Ankunftsraten bzw. . Die erwartete Zeit für das Eintreffen des nächsten Elements für den zusammengeführten Prozess sollte nun .AAABBBλAλA\lambda_AλBλB\lambda_B1λA+λB1λA+λB\frac {1}{\lambda_A+\lambda_B} Angenommen, ist die Ankunftszeit für das nächste Element des kombinierten Prozesses und oder als Ereignisse, bei denen die Elemente aus den Prozessen …


2
Warum würde ein statistisches Modell bei einem riesigen Datensatz überanpassen?
Für mein aktuelles Projekt muss ich möglicherweise ein Modell erstellen, um das Verhalten einer bestimmten Personengruppe vorherzusagen. Der Trainingsdatensatz enthält nur 6 Variablen (ID dient nur zu Identifikationszwecken): id, age, income, gender, job category, monthly spend in dem monthly spendist die Antwortvariable. Der Trainingsdatensatz enthält jedoch ungefähr 3 Millionen Zeilen, …
8 modeling  large-data  overfitting  clustering  algorithms  error  spatial  r  regression  predictive-models  linear-model  average  measurement-error  weighted-mean  error-propagation  python  standard-error  weighted-regression  hypothesis-testing  time-series  machine-learning  self-study  arima  regression  correlation  anova  statistical-significance  excel  r  regression  distributions  statistical-significance  contingency-tables  regression  optimization  measurement-error  loss-functions  image-processing  java  panel-data  probability  conditional-probability  r  lme4-nlme  model-comparison  time-series  probability  probability  conditional-probability  logistic  multiple-regression  model-selection  r  regression  model-based-clustering  svm  feature-selection  feature-construction  time-series  forecasting  stationarity  r  distributions  bootstrap  r  distributions  estimation  maximum-likelihood  garch  references  probability  conditional-probability  regression  logistic  regression-coefficients  model-comparison  confidence-interval  r  regression  r  generalized-linear-model  outliers  robust  regression  classification  categorical-data  r  association-rules  machine-learning  distributions  posterior  likelihood  r  hypothesis-testing  normality-assumption  missing-data  convergence  expectation-maximization  regression  self-study  categorical-data  regression  simulation  regression  self-study  self-study  gamma-distribution  modeling  microarray  synthetic-data 


1
Konfidenzintervalle bei Verwendung des Bayes-Theorems
Ich berechne einige bedingte Wahrscheinlichkeiten und zugehörige 95% -Konfidenzintervalle. In vielen meiner Fälle habe ich eine einfache Anzahl von xErfolgen aus nVersuchen (aus einer Kontingenztabelle), sodass ich ein Binomial-Konfidenzintervall verwenden kann, wie es binom.confint(x, n, method='exact')in in angegeben ist R. In anderen Fällen habe ich solche Daten jedoch nicht, daher …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.