Als «python» getaggte Fragen

Python ist eine Programmiersprache, die häufig für maschinelles Lernen verwendet wird. Verwenden Sie dieses Tag für alle * themenbezogenen * Fragen, bei denen (a) Python entweder als kritischer Teil der Frage oder als erwartete Antwort enthält, und (b) nicht * nur * die Verwendung von Python betrifft.




2
libsvm Datenformat [geschlossen]
Ich verwende das Tool libsvm ( http://www.csie.ntu.edu.tw/~cjlin/libsvm/ ) zur Unterstützung der Vektorklassifizierung. Ich bin jedoch verwirrt über das Format der Eingabedaten. Aus der README: Das Format der Trainings- und Testdatendatei ist: <label> <index1>:<value1> <index2>:<value2> ... . . . Jede Zeile enthält eine Instanz und wird mit einem '\ n'-Zeichen abgeschlossen. …

7
Warum schwankt die Validierungsgenauigkeit?
Ich habe ein vierschichtiges CNN, um die Reaktion auf Krebs mithilfe von MRT-Daten vorherzusagen. Ich benutze ReLU-Aktivierungen, um Nichtlinearitäten einzuführen. Die Zuggenauigkeit und der Verlust nehmen monoton zu bzw. ab. Aber meine Testgenauigkeit beginnt wild zu schwanken. Ich habe versucht, die Lernrate zu ändern und die Anzahl der Schichten zu …



1
Berechnung der Wiederholbarkeit von Effekten aus einem früheren Modell
Ich bin gerade auf diese Arbeit gestoßen , in der beschrieben wird, wie die Wiederholbarkeit (auch bekannt als Zuverlässigkeit, auch bekannt als Intraclass-Korrelation) einer Messung über Mixed-Effects-Modellierung berechnet wird. Der R-Code wäre: #fit the model fit = lmer(dv~(1|unit),data=my_data) #obtain the variance estimates vc = VarCorr(fit) residual_var = attr(vc,'sc')^2 intercept_var = …
28 mixed-model  reliability  intraclass-correlation  repeatability  spss  factor-analysis  survey  modeling  cross-validation  error  curve-fitting  mediation  correlation  clustering  sampling  machine-learning  probability  classification  metric  r  project-management  optimization  svm  python  dataset  quality-control  checking  clustering  distributions  anova  factor-analysis  exponential  poisson-distribution  generalized-linear-model  deviance  machine-learning  k-nearest-neighbour  r  hypothesis-testing  t-test  r  variance  levenes-test  bayesian  software  bayesian-network  regression  repeated-measures  least-squares  change-scores  variance  chi-squared  variance  nonlinear-regression  regression-coefficients  multiple-comparisons  p-value  r  statistical-significance  excel  sampling  sample  r  distributions  interpretation  goodness-of-fit  normality-assumption  probability  self-study  distributions  references  theory  time-series  clustering  econometrics  binomial  hypothesis-testing  variance  t-test  paired-comparisons  statistical-significance  ab-test  r  references  hypothesis-testing  t-test  normality-assumption  wilcoxon-mann-whitney  central-limit-theorem  t-test  data-visualization  interactive-visualization  goodness-of-fit 

2
Warum funktioniert Pythons Scikit-Learn-LDA nicht richtig und wie berechnet es LDA über SVD?
Ich habe die lineare Diskriminanzanalyse (LDA) aus der scikit-learnmaschinellen Lernbibliothek (Python) zur Dimensionsreduktion verwendet und war ein wenig neugierig auf die Ergebnisse. Ich frage mich jetzt, was die LDA scikit-learntut, damit die Ergebnisse anders aussehen als beispielsweise ein manueller Ansatz oder eine in R durchgeführte LDA. Es wäre großartig, wenn …

5
Python-Modul zur Analyse von Änderungspunkten
Ich suche ein Python-Modul, das eine Änderungspunktanalyse für eine Zeitreihe durchführt. Es gibt eine Reihe verschiedener Algorithmen, und ich möchte die Wirksamkeit einiger von ihnen untersuchen, ohne jeden der Algorithmen von Hand rollen zu müssen. Im Idealfall hätte ich gerne Module wie den bcp (Bayesian Change Point) oder Strucchange- Pakete …

1
Keras, wie funktioniert der Zerfall der SGD-Lernrate?
Wenn Sie sich die Dokumentation http://keras.io/optimizers/ ansehen, gibt es in der SGD einen Parameter für den Zerfall. Ich weiß, dass dies die Lernrate im Laufe der Zeit reduziert. Allerdings kann ich nicht herausfinden, wie es genau funktioniert. Ist es ein Wert, der mit der Lernrate multipliziert wird, wie lr = …



4
Wie projiziert man einen neuen Vektor auf den PCA-Raum?
Nach der Durchführung der Hauptkomponentenanalyse (PCA) möchte ich einen neuen Vektor auf den PCA-Raum projizieren (dh seine Koordinaten im PCA-Koordinatensystem finden). Ich habe PCA in R-Sprache mit berechnet prcomp. Jetzt sollte ich meinen Vektor mit der PCA-Rotationsmatrix multiplizieren können. Sollen die Hauptkomponenten in dieser Matrix in Zeilen oder Spalten angeordnet …
21 r  pca  r  variance  heteroscedasticity  misspecification  distributions  time-series  data-visualization  modeling  histogram  kolmogorov-smirnov  negative-binomial  likelihood-ratio  econometrics  panel-data  categorical-data  scales  survey  distributions  pdf  histogram  correlation  algorithms  r  gpu  parallel-computing  approximation  mean  median  references  sample-size  normality-assumption  central-limit-theorem  rule-of-thumb  confidence-interval  estimation  mixed-model  psychometrics  random-effects-model  hypothesis-testing  sample-size  dataset  large-data  regression  standard-deviation  variance  approximation  hypothesis-testing  variance  central-limit-theorem  kernel-trick  kernel-smoothing  error  sampling  hypothesis-testing  normality-assumption  philosophical  confidence-interval  modeling  model-selection  experiment-design  hypothesis-testing  statistical-significance  power  asymptotics  information-retrieval  anova  multiple-comparisons  ancova  classification  clustering  factor-analysis  psychometrics  r  sampling  expectation-maximization  markov-process  r  data-visualization  correlation  regression  statistical-significance  degrees-of-freedom  experiment-design  r  regression  curve-fitting  change-point  loess  machine-learning  classification  self-study  monte-carlo  markov-process  references  mathematical-statistics  data-visualization  python  cart  boosting  regression  classification  robust  cart  survey  binomial  psychometrics  likert  psychology  asymptotics  multinomial 

2
Verwendung der Cross-Validation-Funktionen von scikit-learn für Multi-Label-Klassifikatoren
Ich teste verschiedene Klassifikatoren in einem Datensatz, in dem es 5 Klassen gibt und jede Instanz zu einer oder mehreren dieser Klassen gehören kann. Daher verwende ich speziell die Multi-Label-Klassifikatoren von scikit-learn sklearn.multiclass.OneVsRestClassifier. Jetzt möchte ich eine Kreuzvalidierung mit der durchführen sklearn.cross_validation.StratifiedKFold. Dies erzeugt den folgenden Fehler: Traceback (most recent …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.