Als «kurtosis» getaggte Fragen

ein normalisierter vierter Moment einer Verteilung oder eines Datensatzes.

3
Warum gibt es einen Unterschied zwischen der manuellen Berechnung eines Konfidenzintervalls für eine logistische Regression von 95% und der Verwendung der Funktion confint () in R?
Sehr geehrte Damen und Herren, mir ist etwas Merkwürdiges aufgefallen, das ich Ihnen nicht erklären kann. Zusammenfassend lässt sich sagen, dass der manuelle Ansatz zur Berechnung eines Konfidenzintervalls in einem logistischen Regressionsmodell und die R-Funktion confint()unterschiedliche Ergebnisse liefern. Ich habe die angewandte logistische Regression von Hosmer & Lemeshow (2. Auflage) …
34 r  regression  logistic  confidence-interval  profile-likelihood  correlation  mcmc  error  mixture  measurement  data-augmentation  r  logistic  goodness-of-fit  r  time-series  exponential  descriptive-statistics  average  expected-value  data-visualization  anova  teaching  hypothesis-testing  multivariate-analysis  r  r  mixed-model  clustering  categorical-data  unsupervised-learning  r  logistic  anova  binomial  estimation  variance  expected-value  r  r  anova  mixed-model  multiple-comparisons  repeated-measures  project-management  r  poisson-distribution  control-chart  project-management  regression  residuals  r  distributions  data-visualization  r  unbiased-estimator  kurtosis  expected-value  regression  spss  meta-analysis  r  censoring  regression  classification  data-mining  mixture 

1
Können Freiheitsgrade eine nicht ganzzahlige Zahl sein?
Wenn ich GAM verwende, erhalte ich einen DF-Rest von (letzte Zeile im Code). Was bedeutet das? Über das GAM-Beispiel hinausgehend: Kann die Anzahl der Freiheitsgrade im Allgemeinen eine nicht ganzzahlige Zahl sein?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) Deviance Residuals: Min 1Q Median …
27 r  degrees-of-freedom  gam  machine-learning  pca  lasso  probability  self-study  bootstrap  expected-value  regression  machine-learning  linear-model  probability  simulation  random-generation  machine-learning  distributions  svm  libsvm  classification  pca  multivariate-analysis  feature-selection  archaeology  r  regression  dataset  simulation  r  regression  time-series  forecasting  predictive-models  r  mean  sem  lavaan  machine-learning  regularization  regression  conv-neural-network  convolution  classification  deep-learning  conv-neural-network  regression  categorical-data  econometrics  r  confirmatory-factor  scale-invariance  self-study  unbiased-estimator  mse  regression  residuals  sampling  random-variable  sample  probability  random-variable  convergence  r  survival  weibull  references  autocorrelation  hypothesis-testing  distributions  correlation  regression  statistical-significance  regression-coefficients  univariate  categorical-data  chi-squared  regression  machine-learning  multiple-regression  categorical-data  linear-model  pca  factor-analysis  factor-rotation  classification  scikit-learn  logistic  p-value  regression  panel-data  multilevel-analysis  variance  bootstrap  bias  probability  r  distributions  interquartile  time-series  hypothesis-testing  normal-distribution  normality-assumption  kurtosis  arima  panel-data  stata  clustered-standard-errors  machine-learning  optimization  lasso  multivariate-analysis  ancova  machine-learning  cross-validation 




5
Sollten wir Kurtosis in einem Kurs für angewandte Statistik unterrichten? Wenn das so ist, wie?
Zentrale Tendenz, Ausbreitung und Schiefe lassen sich zumindest intuitiv relativ gut definieren; Die mathematischen Standardmaße dieser Dinge entsprechen auch relativ gut unseren intuitiven Vorstellungen. Aber Kurtosis scheint anders zu sein. Es ist sehr verwirrend und passt nicht gut zu jeder Intuition über die Verteilungsform. Eine typische Erklärung für Kurtosis in …

2
Exponentiell gewichtete Bewegungsschiefe / Kurtosis
Es gibt bekannte Online-Formeln zur Berechnung von exponentiell gewichteten gleitenden Durchschnitten und Standardabweichungen eines Prozesses . Für den Mittelwert,(xn)n=0,1,2,…(xn)n=0,1,2,…(x_n)_{n=0,1,2,\dots} μn=(1−α)μn−1+αxnμn=(1−α)μn−1+αxn\mu_n = (1-\alpha) \mu_{n-1} + \alpha x_n und für die Varianz σ2n=(1−α)σ2n−1+α(xn−μn−1)(xn−μn)σn2=(1−α)σn−12+α(xn−μn−1)(xn−μn)\sigma_n^2 = (1-\alpha) \sigma_{n-1}^2 + \alpha(x_n - \mu_{n-1})(x_n - \mu_n) woraus Sie die Standardabweichung berechnen können. Gibt es ähnliche Formeln …

1
Welche Mehrfachvergleichsmethode kann für ein älteres Modell verwendet werden: lsmeans oder glht?
Ich analysiere einen Datensatz unter Verwendung eines gemischten Effektmodells mit einem festen Effekt (Bedingung) und zwei zufälligen Effekten (Teilnehmer aufgrund des innerhalb des Motivs und des Paares). Das Modell wurde mit dem erzeugten lme4Paket: exp.model<-lmer(outcome~condition+(1|participant)+(1|pair),data=exp). Als nächstes führte ich einen Likelihood-Ratio-Test dieses Modells gegen das Modell ohne festen Effekt (Bedingung) …



2
Abweichung von der Normalitätsannahme in der ANOVA: Ist Kurtosis oder Skewness wichtiger?
Angewandte lineare statistische Modelle von Kutner et al. In Bezug auf Abweichungen von der Normalitätsannahme von ANOVA-Modellen heißt es: Die Kurtosis der Fehlerverteilung (entweder mehr oder weniger als eine Normalverteilung) ist im Hinblick auf die Auswirkungen auf Schlussfolgerungen wichtiger als die Schiefe der Verteilung . Ich bin ein bisschen verwirrt …

3
Wie verwandle ich die leptokurtische Verteilung in Normalität?
Angenommen, ich habe eine leptokurtische Variable, die ich in Normalität umwandeln möchte. Welche Transformationen können diese Aufgabe erfüllen? Mir ist durchaus bewusst, dass die Umwandlung von Daten nicht immer wünschenswert ist, aber als akademische Maßnahme möchte ich die Daten in die Normalität "hämmern". Wie Sie aus der Grafik ersehen können, …




Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.