Der ursprüngliche Beitrag enthält einige wichtige Punkte: (1) Es können niemals "Daten" normal verteilt werden. Daten sind notwendigerweise diskret. Die gültige Frage lautet: "Ist der Prozess, der die Daten erzeugt hat, ein normalverteilter Prozess?" Aber (2) die Antwort auf die zweite Frage lautet immer "Nein", unabhängig davon, was Ihnen ein statistischer Test oder eine andere auf Daten basierende Bewertung gibt. Normalverteilte Prozesse erzeugen Daten mit unendlicher Kontinuität, perfekter Symmetrie und genau festgelegten Wahrscheinlichkeiten innerhalb von Standardabweichungsbereichen (z. B. 68-95-99.7), von denen keine jemals genau für Prozesse gilt, die zu Daten führen, die wir mit was auch immer messen können Messgerät, das wir Menschen benutzen können.
Sie können also niemals Daten als normalverteilt betrachten, und Sie können niemals den Prozess, der die Daten erzeugt hat, als einen genau normalverteilten Prozess betrachten. Wie Glen_b angedeutet hat, spielt es jedoch möglicherweise keine große Rolle, je nachdem, was Sie mit den Daten versuchen.
Mithilfe von Skewness- und Kurtosis-Statistiken können Sie bestimmte Arten von Abweichungen von der Normalität Ihres Datengenerierungsprozesses beurteilen. Es handelt sich jedoch um sehr variable Statistiken. Die oben angegebenen Standardfehler sind nicht nützlich, da sie nur unter Normalität gültig sind, was bedeutet, dass sie nur als Test für Normalität nützlich sind, eine im Wesentlichen nutzlose Übung. Es wäre besser, den Bootstrap zu verwenden, um Se's zu finden, obwohl große Samples benötigt würden, um genaue Se's zu erhalten.
Außerdem ist Kurtosis im Gegensatz zum obigen Beitrag sehr leicht zu interpretieren. Dies ist der Durchschnitt (oder der erwartete Wert) der Z-Werte, jeweils mit der vierten Potenz. Groß | Z | Werte sind Ausreißer und tragen stark zur Kurtosis bei. Klein | Z | Werte, bei denen der "Peak" der Verteilung ist, ergeben Z ^ 4 -Werte, die winzig sind und im Wesentlichen nichts zur Kurtosis beitragen. Ich habe in meinem Artikel https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4321753/ bewiesen, dass die Kurtosis durch den Durchschnitt der Z ^ 4 * I (| Z |> 1) -Werte sehr gut angenähert wird. Daher misst Kurtosis die Neigung des Datenerzeugungsprozesses, Ausreißer zu erzeugen.