Als «fitting» getaggte Fragen

Der Prozess der Anpassung eines statistischen Modells an einen bestimmten Datensatz. Meistens am Computer und mit verschiedenen numerischen Methoden wie Optimierung oder numerischer Integration oder Simulation.



2
Wie berechne ich beim Anpassen einer Kurve das 95% -Konfidenzintervall für meine angepassten Parameter?
Ich passe Kurven an meine Daten an, um einen Parameter zu extrahieren. Ich bin mir jedoch nicht sicher, wie sicher dieser Parameter ist und wie ich sein % -Konfidenzintervall berechnen / ausdrücken würde .959595 Angenommen, für einen Datensatz, der Daten enthält, die exponentiell abfallen, passe ich jedem Datensatz eine Kurve …

3
Zuverlässigkeit einer angepassten Kurve?
Ich möchte die Unsicherheit oder Zuverlässigkeit einer angepassten Kurve abschätzen. Ich nenne absichtlich keine genaue mathematische Größe, nach der ich suche, da ich nicht weiß, was es ist. Hier ist (Energie) die abhängige Variable (Antwort) und V (Volumen) die unabhängige Variable. Ich möchte die Energie-Volumen-Kurve E ( V ) eines …



1
Anpassung an räumliche Daten anpassen
Cross-Posting meiner Frage von Mathoverflow , um einige Statistiken spezifische Hilfe zu finden. Ich studiere einen physikalischen Prozess, der Daten generiert, die gut in zwei Dimensionen mit nicht negativen Werten projizieren. Jeder Prozess hat eine (projizierte) Spur vonxxx- -yyy Punkte - siehe Bild unten. Die Beispielspuren sind blau, ein problematischer …

1
Wie baue ich einen innovativen Ausreißer bei Beobachtung 48 in mein ARIMA-Modell ein?
Ich arbeite an einem Datensatz. Nachdem ich einige Modellidentifikationstechniken angewendet hatte, kam ich mit einem ARIMA (0,2,1) -Modell heraus. Ich habe die detectIOFunktion im Paket TSAin R verwendet, um bei der 48. Beobachtung meines ursprünglichen Datensatzes einen innovativen Ausreißer (IO) zu erkennen . Wie kann ich diesen Ausreißer in mein …
10 r  time-series  arima  outliers  hypergeometric  fishers-exact  r  time-series  intraclass-correlation  r  logistic  glmm  clogit  mixed-model  spss  repeated-measures  ancova  machine-learning  python  scikit-learn  distributions  data-transformation  stochastic-processes  web  standard-deviation  r  machine-learning  spatial  similarities  spatio-temporal  binomial  sparse  poisson-process  r  regression  nonparametric  r  regression  logistic  simulation  power-analysis  r  svm  random-forest  anova  repeated-measures  manova  regression  statistical-significance  cross-validation  group-differences  model-comparison  r  spatial  model-evaluation  parallel-computing  generalized-least-squares  r  stata  fitting  mixture  hypothesis-testing  categorical-data  hypothesis-testing  anova  statistical-significance  repeated-measures  likert  wilcoxon-mann-whitney  boxplot  statistical-significance  confidence-interval  forecasting  prediction-interval  regression  categorical-data  stata  least-squares  experiment-design  skewness  reliability  cronbachs-alpha  r  regression  splines  maximum-likelihood  modeling  likelihood-ratio  profile-likelihood  nested-models 



3
Ein konkretes Beispiel ist die Durchführung einer SVD, um fehlende Werte zu unterstellen
Ich habe die großartigen Kommentare zum Umgang mit fehlenden Werten vor dem Anwenden von SVD gelesen, möchte aber anhand eines einfachen Beispiels wissen, wie dies funktioniert: Movie1 Movie2 Movie3 User1 5 4 User2 2 5 5 User3 3 4 User4 1 5 User5 5 1 5 Wenn ich in der …
8 r  missing-data  data-imputation  svd  sampling  matlab  mcmc  importance-sampling  predictive-models  prediction  algorithms  graphical-model  graph-theory  r  regression  regression-coefficients  r-squared  r  regression  modeling  confounding  residuals  fitting  glmm  zero-inflation  overdispersion  optimization  curve-fitting  regression  time-series  order-statistics  bayesian  prior  uninformative-prior  probability  discrete-data  kolmogorov-smirnov  r  data-visualization  histogram  dimensionality-reduction  classification  clustering  accuracy  semi-supervised  labeling  state-space-models  t-test  biostatistics  paired-comparisons  paired-data  bioinformatics  regression  logistic  multiple-regression  mixed-model  random-effects-model  neural-networks  error-propagation  numerical-integration  time-series  missing-data  data-imputation  probability  self-study  combinatorics  survival  cox-model  statistical-significance  wilcoxon-mann-whitney  hypothesis-testing  distributions  normal-distribution  variance  t-distribution  probability  simulation  random-walk  diffusion  hypothesis-testing  z-test  hypothesis-testing  data-transformation  lognormal  r  regression  agreement-statistics  classification  svm  mixed-model  non-independent  observational-study  goodness-of-fit  residuals  confirmatory-factor  neural-networks  deep-learning 




2
Regression für das Machtrecht
Dies ist ein Crosspost von Math SE . Ich habe einige Daten (Laufzeit eines Algorithmus) und ich denke, dass sie einem Potenzgesetz folgen yr e g= k xeinyreg=kxay_\mathrm{reg} = k x^a Ich möchte und bestimmen . Was ich bisher getan habe, ist eine lineare Regression (kleinste Quadrate) durch und und …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.