Als «errors-in-variables» getaggte Fragen

5
Umgang mit hierarchischen / verschachtelten Daten beim maschinellen Lernen
Ich werde mein Problem mit einem Beispiel erklären. Angenommen, Sie möchten das Einkommen einer Person anhand einiger Attribute vorhersagen: {Alter, Geschlecht, Land, Region, Stadt}. Sie haben einen Trainingsdatensatz wie diesen train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", "M","F","M","F", "F","F","F","M")), Income=c(31,42,71,65, 50,51,101,38, 47,50,55,23)) …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 

1
Was ist die Intuition hinter austauschbaren Proben unter der Nullhypothese?
Permutationstests (auch Randomisierungstest, Re-Randomisierungstest oder exakter Test genannt) sind sehr nützlich und nützlich, wenn die zum Beispiel erforderliche Annahme einer Normalverteilung t-testnicht erfüllt ist und wenn die Transformation der Werte durch Rangfolge der Werte erfolgt Ein nicht parametrischer Test Mann-Whitney-U-testwürde dazu führen, dass mehr Informationen verloren gehen. Eine einzige Annahme, …
15 hypothesis-testing  permutation-test  exchangeability  r  statistical-significance  loess  data-visualization  normal-distribution  pdf  ggplot2  kernel-smoothing  probability  self-study  expected-value  normal-distribution  prior  correlation  time-series  regression  heteroscedasticity  estimation  estimators  fisher-information  data-visualization  repeated-measures  binary-data  panel-data  mathematical-statistics  coefficient-of-variation  normal-distribution  order-statistics  regression  machine-learning  one-class  probability  estimators  forecasting  prediction  validation  finance  measurement-error  variance  mean  spatial  monte-carlo  data-visualization  boxplot  sampling  uniform  chi-squared  goodness-of-fit  probability  mixture  theory  gaussian-mixture  regression  statistical-significance  p-value  bootstrap  regression  multicollinearity  correlation  r  poisson-distribution  survival  regression  categorical-data  ordinal-data  ordered-logit  regression  interaction  time-series  machine-learning  forecasting  cross-validation  binomial  multiple-comparisons  simulation  false-discovery-rate  r  clustering  frequency  wilcoxon-mann-whitney  wilcoxon-signed-rank  r  svm  t-test  missing-data  excel  r  numerical-integration  r  random-variable  lme4-nlme  mixed-model  weighted-regression  power-law  errors-in-variables  machine-learning  classification  entropy  information-theory  mutual-information 


2
Was können Sie tun, wenn Sie Prädiktorvariablen haben, die auf Gruppendurchschnitten mit unterschiedlichen Stichprobengrößen basieren?
Stellen Sie sich ein klassisches Datenanalyseproblem vor, bei dem Sie ein Ergebnis YiYiY_{i} und wie es mit einer Reihe von Prädiktoren . Die grundlegende Art der Anwendung ist hierXi1,...,XipXi1,...,XipX_{i1}, ..., X_{ip} iYiYiY_{i} ist ein Ergebnis auf Gruppenebene, beispielsweise die Kriminalitätsrate in Stadt .iii Die Prädiktoren sind Merkmale auf Gruppenebene, z. …

1
Verzerrter Schätzer für die Regression, der bessere Ergebnisse erzielt als der unverzerrte Schätzer im Modell für Fehler in Variablen
Ich arbeite an einigen syntaktischen Daten für das Error-In-Variable-Modell für einige Untersuchungen. Derzeit habe ich eine einzige unabhängige Variable und gehe davon aus, dass ich die Varianz für den wahren Wert der abhängigen Variablen kenne. Mit diesen Informationen kann ich also einen unverzerrten Schätzer für den Koeffizienten der abhängigen Variablen …

1
Methoden zur Anpassung eines „einfachen“ Messfehlermodells
Ich suche nach Methoden, mit denen sich das Messfehlermodell "OLS" abschätzen lässt. yi=Yi+ey,iyi=Yi+ey,iy_{i}=Y_{i}+e_{y,i} xi=Xi+ex,ixi=Xi+ex,ix_{i}=X_{i}+e_{x,i} Yi=α+βXiYi=α+βXiY_{i}=\alpha + \beta X_{i} Wobei die Fehler unabhängig normal sind mit unbekannten Varianzen und . "Standard" OLS funktioniert in diesem Fall nicht.σ2yσy2\sigma_{y}^{2}σ2xσx2\sigma_{x}^{2} Wikipedia hat einige unattraktive Lösungen - die beiden genannten zwingen Sie anzunehmen, dass entweder …



Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.