Als «error-propagation» getaggte Fragen

2
Entropieübergreifende Kostenfunktion im neuronalen Netz
Ich betrachte die entropieübergreifende Kostenfunktion in diesem Tutorial : C=−1n∑x[ylna+(1−y)ln(1−a)]C=−1n∑x[yln⁡a+(1−y)ln⁡(1−a)]C = -\frac{1}{n} \sum_x [y \ln a+(1−y)\ln(1−a)] Worüber summieren wir genau? Es ist natürlich über , aber und ändern sich nicht mit . Alle sind Eingaben in die . wird sogar im Absatz über der Gleichung als Funktion der Summe aller …

2
Fehlerausbreitung SD vs SE
Ich habe 3 bis 5 Maße eines Merkmals pro Person unter zwei verschiedenen Bedingungen (A und B). Ich Plotten der Durchschnitt für jedes einzelne in jedem Zustand und I verwenden , um die Standardfehler ( dh , , wobei = Anzahl der Messungen) als Fehlerbalken. N.SD/N−−√SD/NSD/\sqrt{N}NNN Jetzt möchte ich die …


3
Ein konkretes Beispiel ist die Durchführung einer SVD, um fehlende Werte zu unterstellen
Ich habe die großartigen Kommentare zum Umgang mit fehlenden Werten vor dem Anwenden von SVD gelesen, möchte aber anhand eines einfachen Beispiels wissen, wie dies funktioniert: Movie1 Movie2 Movie3 User1 5 4 User2 2 5 5 User3 3 4 User4 1 5 User5 5 1 5 Wenn ich in der …
8 r  missing-data  data-imputation  svd  sampling  matlab  mcmc  importance-sampling  predictive-models  prediction  algorithms  graphical-model  graph-theory  r  regression  regression-coefficients  r-squared  r  regression  modeling  confounding  residuals  fitting  glmm  zero-inflation  overdispersion  optimization  curve-fitting  regression  time-series  order-statistics  bayesian  prior  uninformative-prior  probability  discrete-data  kolmogorov-smirnov  r  data-visualization  histogram  dimensionality-reduction  classification  clustering  accuracy  semi-supervised  labeling  state-space-models  t-test  biostatistics  paired-comparisons  paired-data  bioinformatics  regression  logistic  multiple-regression  mixed-model  random-effects-model  neural-networks  error-propagation  numerical-integration  time-series  missing-data  data-imputation  probability  self-study  combinatorics  survival  cox-model  statistical-significance  wilcoxon-mann-whitney  hypothesis-testing  distributions  normal-distribution  variance  t-distribution  probability  simulation  random-walk  diffusion  hypothesis-testing  z-test  hypothesis-testing  data-transformation  lognormal  r  regression  agreement-statistics  classification  svm  mixed-model  non-independent  observational-study  goodness-of-fit  residuals  confirmatory-factor  neural-networks  deep-learning 

2
Warum würde ein statistisches Modell bei einem riesigen Datensatz überanpassen?
Für mein aktuelles Projekt muss ich möglicherweise ein Modell erstellen, um das Verhalten einer bestimmten Personengruppe vorherzusagen. Der Trainingsdatensatz enthält nur 6 Variablen (ID dient nur zu Identifikationszwecken): id, age, income, gender, job category, monthly spend in dem monthly spendist die Antwortvariable. Der Trainingsdatensatz enthält jedoch ungefähr 3 Millionen Zeilen, …
8 modeling  large-data  overfitting  clustering  algorithms  error  spatial  r  regression  predictive-models  linear-model  average  measurement-error  weighted-mean  error-propagation  python  standard-error  weighted-regression  hypothesis-testing  time-series  machine-learning  self-study  arima  regression  correlation  anova  statistical-significance  excel  r  regression  distributions  statistical-significance  contingency-tables  regression  optimization  measurement-error  loss-functions  image-processing  java  panel-data  probability  conditional-probability  r  lme4-nlme  model-comparison  time-series  probability  probability  conditional-probability  logistic  multiple-regression  model-selection  r  regression  model-based-clustering  svm  feature-selection  feature-construction  time-series  forecasting  stationarity  r  distributions  bootstrap  r  distributions  estimation  maximum-likelihood  garch  references  probability  conditional-probability  regression  logistic  regression-coefficients  model-comparison  confidence-interval  r  regression  r  generalized-linear-model  outliers  robust  regression  classification  categorical-data  r  association-rules  machine-learning  distributions  posterior  likelihood  r  hypothesis-testing  normality-assumption  missing-data  convergence  expectation-maximization  regression  self-study  categorical-data  regression  simulation  regression  self-study  self-study  gamma-distribution  modeling  microarray  synthetic-data 

1
Sind glaubwürdige Intervalle bei Rückschlüssen auf Gruppenmittelwerte empfindlich gegenüber Abweichungen innerhalb des Subjekts, während dies bei Konfidenzintervallen nicht der Fall ist?
Dies ist ein Nebeneffekt dieser Frage: Wie kann man zwei Gruppen mit mehreren Messungen für jedes Individuum mit R vergleichen? In den Antworten dort (wenn ich richtig verstanden habe) habe ich gelernt, dass die Varianz innerhalb des Subjekts keine Rückschlüsse auf Gruppenmittelwerte hat, und es ist in Ordnung, einfach die …

2
Wie kann Unsicherheit in die Vorhersage eines neuronalen Netzwerks übertragen werden?
Ich habe Eingaben , die Unsicherheiten gekannt haben . Ich benutze sie, um die Ausgaben in einem trainierten neuronalen Netzwerk vorherzusagen . Wie kann ich 1 Unsicherheiten bei meinen Vorhersagen erhalten?x1…xnx1…xnx_1\ldots x_n1σ1σ1\sigmaϵ1…ϵnϵ1…ϵn\epsilon_1 \ldots \epsilon_ny1…ymy1…ymy_1 \ldots y_mσσ\sigma Meine Idee ist es, jeden Eingang zufällig mit normalem Rauschen mit dem Mittelwert 0 …
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.