Ein Bereich des maschinellen Lernens, der sich mit dem Lernen hierarchischer Darstellungen der Daten befasst, hauptsächlich mit tiefen neuronalen Netzen.
Ich habe einen Datensatz mit 34 Eingabespalten und 8 Ausgabespalten. Eine Möglichkeit, das Problem zu lösen, besteht darin, die 34 Eingaben zu verwenden und für jede Ausgabespalte ein individuelles Regressionsmodell zu erstellen. Ich frage mich, ob dieses Problem mit nur einem Modell gelöst werden kann, insbesondere mit Neural Network. Ich …
Ich verwende Bidirectional RNN, um ein Ereignis mit unausgeglichenem Auftreten zu erkennen. Die positive Klasse ist 100-mal seltener als die negative Klasse. Obwohl keine Regularisierung verwendet wird, kann ich eine 100% ige Genauigkeit für das Zugset und 30% für das Validierungsset erhalten. Ich schalte die 12-Regularisierung ein und das Ergebnis …
Ich habe einen unausgeglichenen Datensatz in einer binären Klassifizierungsaufgabe, bei der die positive Menge gegenüber der negativen Menge 0,3% gegenüber 99,7% beträgt. Die Kluft zwischen Positiven und Negativen ist groß. Wenn ich ein CNN mit der im MNIST-Problem verwendeten Struktur trainiere, zeigt das Testergebnis eine hohe False Negative Rate. Außerdem …
Das folgende Beispiel stammt aus den Vorlesungen in deeplearning.ai zeigt, dass das Ergebnis die Summe des Element-für-Element-Produkts (oder der "elementweisen Multiplikation") ist. Die roten Zahlen stehen für die Gewichte im Filter: (1∗1)+(1∗0)+(1∗1)+(0∗0)+(1∗1)+(1∗0)+(0∗1)+(0∗0)+(1∗1)=1+0+1+0+1+0+0+0+1=4(1∗1)+(1∗0)+(1∗1)+(0∗0)+(1∗1)+(1∗0)+(0∗1)+(0∗0)+(1∗1)=1+0+1+0+1+0+0+0+1=4(1*1)+(1*0)+(1*1)+(0*0)+(1*1)+(1*0)+(0*1)+(0*0)+(1*1) = 1+0+1+0+1+0+0+0+1 = 4 Die meisten Ressourcen sagen jedoch, dass das Punktprodukt verwendet wird: "... wir können die …
Ich habe Zweifel, wie genau die Verlustfunktion eines Deep Q-Learning-Netzwerks trainiert wird. Ich verwende ein 2-Schicht-Feedforward-Netzwerk mit linearer Ausgangsschicht und relu versteckten Schichten. Nehmen wir an, ich habe 4 mögliche Aktionen. Somit ist der Ausgang von dem Netzwerk für den aktuellen Zustand ist . Um es konkreter zu machen, nehmen …
Pooling und Schritt beide können verwendet werden, um das Bild herunterzusampeln. Nehmen wir an, wir haben ein Bild von 4x4 wie unten und einen Filter von 2x2. Wie entscheiden wir dann, ob (2x2 Pooling) vs. (Schritt 2) verwendet werden soll?
Ich frage mich, welche nützlichen Techniken es gibt, um zu überprüfen, ob eine Implementierung eines neuronalen Netzwerks korrekt funktioniert. Im Folgenden sind einige mir bekannte Schecks aufgeführt. Es würde mich interessieren, mehr davon zu erfahren: Zeichnen einiger Metriken (F1-Punktzahl, Genauigkeit, Kosten usw.) im Zug / Test / gültigen Sets gegen …
Ich habe kürzlich diesen Vortrag von Eric J. Ma gesehen und in seinem Blogeintrag , in dem er Radford Neal zitiert, überprüft , dass Bayes'sche Modelle nicht überpassen (aber sie können überpassen ), und wenn wir sie verwenden, benötigen wir keine Testsätze, um sie zu validieren (z In den Anführungszeichen …
Beispiele: Ich habe einen Satz in der Stellenbeschreibung: "Java Senior Engineer in UK". Ich möchte ein Deep-Learning-Modell verwenden, um es als zwei Kategorien vorherzusagen: English und IT jobs. Wenn ich ein traditionelles Klassifizierungsmodell verwende, kann es nur 1 Etikett mit softmaxFunktion auf der letzten Ebene vorhersagen . Somit kann ich …
Wie interpretieren Sie eine Überlebenskurve aus dem Cox-Proportional-Hazard-Modell? Nehmen wir in diesem Spielzeugbeispiel an, wir haben ein Cox-Proportional-Hazard-Modell für ageVariablen in kidneyDaten und generieren die Überlebenskurve. library(survival) fit <- coxph(Surv(time, status)~age, data=kidney) plot(conf.int="none", survfit(fit)) grid() Welche Aussage ist zum Zeitpunkt zum Beispiel wahr? oder sind beide falsch?200200200 Statement 1: Wir …
Ich habe über SVMs gelesen und festgestellt, dass sie ein Optimierungsproblem lösen und die Idee der maximalen Gewinnspanne sehr vernünftig war. Jetzt können sie mithilfe von Kerneln sogar nichtlineare Trennungsgrenzen finden, was großartig war. Bisher habe ich wirklich keine Ahnung, wie SVMs (eine spezielle Kernelmaschine) und Kernelmaschinen mit neuronalen Netzen …
Ich trainiere ein einfaches Faltungs-Neuronales Netzwerk für die Regression, wobei die Aufgabe darin besteht, die (x, y) Position einer Box in einem Bild vorherzusagen, z. Die Ausgabe des Netzwerks hat zwei Knoten, einen für x und einen für y. Der Rest des Netzwerks ist ein Standard-Faltungsnetzwerk. Der Verlust ist ein …
Ich möchte die Wichtigkeit jedes Eingabe-Features mithilfe eines tiefen Modells berechnen. Ich fand jedoch nur einen Artikel über die Auswahl von Funktionen mithilfe von Deep Learning - die Auswahl von Funktionen . Sie fügen eine Ebene von Knoten ein, die direkt mit jedem Feature verbunden sind, vor der ersten verborgenen …
Angenommen, ich habe eine Modellarchitektur für tiefes Lernen sowie eine ausgewählte Mini-Batch-Größe. Wie leite ich daraus die erwarteten Speicheranforderungen für das Training dieses Modells ab? Betrachten Sie als Beispiel ein (nicht wiederkehrendes) Modell mit einer Eingabe der Dimension 1000, 4 vollständig verbundenen verborgenen Schichten der Dimension 100 und einer zusätzlichen …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.