Als «aic» getaggte Fragen

AIC steht für das Akaike Information Criterion, eine Technik, mit der das beste Modell aus einer Klasse von Modellen unter Verwendung einer bestraften Wahrscheinlichkeit ausgewählt wird. Ein kleinerer AIC impliziert ein besseres Modell.


2
REML vs ML stepAIC
Ich fühle mich überwältigt, nachdem ich versucht habe, mich mit der Literatur zu befassen, wie ich meine gemischte Modellanalyse durchführen kann, um anschließend mit AIC das beste Modell oder die besten Modelle auszuwählen. Ich denke nicht, dass meine Daten so kompliziert sind, aber ich suche nach einer Bestätigung, dass das, …

1
Welches Deep-Learning-Modell kann Kategorien klassifizieren, die sich nicht gegenseitig ausschließen?
Beispiele: Ich habe einen Satz in der Stellenbeschreibung: "Java Senior Engineer in UK". Ich möchte ein Deep-Learning-Modell verwenden, um es als zwei Kategorien vorherzusagen: English und IT jobs. Wenn ich ein traditionelles Klassifizierungsmodell verwende, kann es nur 1 Etikett mit softmaxFunktion auf der letzten Ebene vorhersagen . Somit kann ich …
9 machine-learning  deep-learning  natural-language  tensorflow  sampling  distance  non-independent  application  regression  machine-learning  logistic  mixed-model  control-group  crossover  r  multivariate-analysis  ecology  procrustes-analysis  vegan  regression  hypothesis-testing  interpretation  chi-squared  bootstrap  r  bioinformatics  bayesian  exponential  beta-distribution  bernoulli-distribution  conjugate-prior  distributions  bayesian  prior  beta-distribution  covariance  naive-bayes  smoothing  laplace-smoothing  distributions  data-visualization  regression  probit  penalized  estimation  unbiased-estimator  fisher-information  unbalanced-classes  bayesian  model-selection  aic  multiple-regression  cross-validation  regression-coefficients  nonlinear-regression  standardization  naive-bayes  trend  machine-learning  clustering  unsupervised-learning  wilcoxon-mann-whitney  z-score  econometrics  generalized-moments  method-of-moments  machine-learning  conv-neural-network  image-processing  ocr  machine-learning  neural-networks  conv-neural-network  tensorflow  r  logistic  scoring-rules  probability  self-study  pdf  cdf  classification  svm  resampling  forecasting  rms  volatility-forecasting  diebold-mariano  neural-networks  prediction-interval  uncertainty 

2
Warum werden Informationskriterien (nicht angepasstes
In Zeitreihenmodellen wie ARMA-GARCH werden zur Auswahl einer geeigneten Verzögerung oder Reihenfolge des Modells verschiedene Informationskriterien wie AIC, BIC, SIC usw. verwendet. Meine Frage ist sehr einfach: Warum verwenden wir nicht angepasstes , um ein geeignetes Modell auszuwählen? Wir können ein Modell auswählen, das zu einem höheren Wert des angepassten …

4
Interpretation des AIC-Wertes
Typische AIC-Werte, die ich für Logistikmodelle gesehen habe, sind Tausende, mindestens Hunderte. zB auf http://www.r-bloggers.com/how-to-perform-a-logistic-regression-in-r/ beträgt der AIC 727,39 Während immer gesagt wird, dass AIC nur zum Vergleichen von Modellen verwendet werden sollte, wollte ich verstehen, was ein bestimmter AIC-Wert bedeutet. Gemäß der Formel ist A ichC.= - 2 log( …

1
Äquivalenz von AIC- und p-Werten bei der Modellauswahl
In einem Kommentar zur Antwort auf diese Frage wurde festgestellt, dass die Verwendung von AIC bei der Modellauswahl der Verwendung eines p-Werts von 0,154 entspricht. Ich habe es in R versucht, wo ich einen "Rückwärts" -Untergruppenauswahlalgorithmus verwendet habe, um Variablen aus einer vollständigen Spezifikation herauszuwerfen. Erstens durch sequentielles Auswerfen der …


2
Berechnen Sie die ROC-Kurve für Daten
Ich habe also 16 Studien, in denen ich versuche, eine Person anhand eines biometrischen Merkmals mithilfe von Hamming Distance zu authentifizieren. Mein Schwellenwert ist auf 3,5 eingestellt. Meine Daten sind unten und nur Versuch 1 ist ein wahres Positiv: Trial Hamming Distance 1 0.34 2 0.37 3 0.34 4 0.29 …
9 mathematical-statistics  roc  classification  cross-validation  pac-learning  r  anova  survival  hazard  machine-learning  data-mining  hypothesis-testing  regression  random-variable  non-independent  normal-distribution  approximation  central-limit-theorem  interpolation  splines  distributions  kernel-smoothing  r  data-visualization  ggplot2  distributions  binomial  random-variable  poisson-distribution  simulation  kalman-filter  regression  lasso  regularization  lme4-nlme  model-selection  aic  r  mcmc  dlm  particle-filter  r  panel-data  multilevel-analysis  model-selection  entropy  graphical-model  r  distributions  quantiles  qq-plot  svm  matlab  regression  lasso  regularization  entropy  inference  r  distributions  dataset  algorithms  matrix-decomposition  regression  modeling  interaction  regularization  expected-value  exponential  gamma-distribution  mcmc  gibbs  probability  self-study  normality-assumption  naive-bayes  bayes-optimal-classifier  standard-deviation  classification  optimization  control-chart  engineering-statistics  regression  lasso  regularization  regression  references  lasso  regularization  elastic-net  r  distributions  aggregation  clustering  algorithms  regression  correlation  modeling  distributions  time-series  standard-deviation  goodness-of-fit  hypothesis-testing  statistical-significance  sample  binary-data  estimation  random-variable  interpolation  distributions  probability  chi-squared  predictor  outliers  regression  modeling  interaction 


2
AIC-Formel in Einführung in das statistische Lernen
Ich bin ein wenig verwirrt über eine Formel, die in Hasties "Einführung in das statistische Lernen" vorgestellt wird. In Kapitel 6, Seite 212 (sechster Druck, hier verfügbar ) heißt es: A ichC.= R S.S.n σ^2+ 2 dnAIC=RSSnσ^2+2dnAIC = \frac{RSS}{n\hat\sigma^2} + \frac{2d}{n} Für lineare Modelle mit Gaußschem Rauschen ist die Anzahl …

1
Was bricht die Vergleichbarkeit von Modellen mit dem AIC?
Angenommen, ich habe einige Modelle mit Prädiktoren (und der Antwortvariablen) aus demselben Datensatz angepasst. Welche Änderungen am Modell machen es für mich unangemessen, die Modelle auf der Basis von AIC zu vergleichen? 1) Angenommen, wenn ich die Transformation der abhängigen Variablen protokolliere, ist es fair, sie mit einem Modell zu …
9 aic 




1
Was bringt es, Daten in Trainings- und Testteile zu unterteilen, um die Vorhersageeigenschaften bei AIC zu bewerten?
Asymptotisch entspricht die Minimierung des AIC der Minimierung der ausgelassenen Kreuzvalidierungs-MSE für Querschnittsdaten [ 1 ]. Wenn wir also AIC haben, warum verwendet man überhaupt die Methode der Aufteilung der Daten in Trainings-, Validierungs- und Testsätze, um die Vorhersageeigenschaften von Modellen zu messen? Was genau sind die Vorteile dieser Praxis? …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.