Als «variance» getaggte Fragen

Die erwartete quadratische Abweichung einer Zufallsvariablen von ihrem Mittelwert; oder die durchschnittliche quadratische Abweichung der Daten über ihren Mittelwert.



2
Ermitteln der Varianz des Schätzers für die maximale Wahrscheinlichkeit für die Poisson-Verteilung
Wenn iid Poisson-Verteilungen mit dem Parameter ich herausgefunden, dass die maximale Wahrscheinlichkeitsschätzung für Daten . Daher können wir den entsprechenden Schätzer Meine Frage ist, wie würden Sie die Varianz dieses Schätzers berechnen?K1,…,KnK1,…,KnK_1, \dots, K_nββ\betaβ^(k1,…,kn)=1n∑i=1nkiβ^(k1,…,kn)=1n∑i=1nki\hat\beta (k_1, \dots, k_n) = \frac{1}{n} \sum_{i=1}^n k_ik1,…,knk1,…,knk_1, \dots, k_nT=1n∑i=1nKi.T=1n∑i=1nKi.T = \frac{1}{n} \sum_{i=1}^n K_i . Da jedes …

2
Mann-Whitney-Nullhypothese bei ungleicher Varianz
Ich bin nur neugierig auf die Nullhypothese eines Mann-Whitney-U-Tests. Ich sehe oft, dass die Nullhypothese lautet, dass zwei Populationen gleiche Verteilungen haben. Aber ich denke - wenn ich zwei normale Populationen mit dem gleichen Mittelwert, aber einer extrem ungleichen Varianz hätte, würde der Mann-Whitney-Test diesen Unterschied wahrscheinlich nicht erkennen. Ich …

4
Box Cox Transformationen zur Regression
Ich versuche, ein lineares Modell mit nur einem Prädiktor (z. B. (x, y)) an einige Daten anzupassen. Die Daten sind so, dass für kleine Werte von x die y-Werte eine enge Anpassung an eine gerade Linie ergeben. Wenn jedoch die x-Werte zunehmen, werden die y-Werte flüchtiger. Hier ist ein Beispiel …

2
Parametrisches, semiparametrisches und nichtparametrisches Bootstrapping für gemischte Modelle
Die folgenden Transplantate stammen aus diesem Artikel . Ich bin ein Neuling im Bootstrap und versuche, das parametrische, semiparametrische und nichtparametrische Bootstrapping-Bootstrapping für ein lineares gemischtes Modell mit R bootPaket zu implementieren. R-Code Hier ist mein RCode: library(SASmixed) library(lme4) library(boot) fm1Cult <- lmer(drywt ~ Inoc + Cult + (1|Block) + …
9 r  mixed-model  bootstrap  central-limit-theorem  stable-distribution  time-series  hypothesis-testing  markov-process  r  correlation  categorical-data  association-measure  meta-analysis  r  anova  confidence-interval  lm  r  bayesian  multilevel-analysis  logit  regression  logistic  least-squares  eda  regression  notation  distributions  random-variable  expected-value  distributions  markov-process  hidden-markov-model  r  variance  group-differences  microarray  r  descriptive-statistics  machine-learning  references  r  regression  r  categorical-data  random-forest  data-transformation  data-visualization  interactive-visualization  binomial  beta-distribution  time-series  forecasting  logistic  arima  beta-regression  r  time-series  seasonality  large-data  unevenly-spaced-time-series  correlation  statistical-significance  normalization  population  group-differences  demography 


3
Was ist falsch an meinem Beweis des Gesetzes der totalen Varianz?
Nach dem Gesetz der Gesamtvarianz ist Var(X)=E(Var(X∣Y))+Var(E(X∣Y))Var⁡(X)=E⁡(Var⁡(X∣Y))+Var⁡(E⁡(X∣Y))\operatorname{Var}(X)=\operatorname{E}(\operatorname{Var}(X\mid Y)) + \operatorname{Var}(\operatorname{E}(X\mid Y)) Wenn ich es beweisen will, schreibe ich Var(X)=E(X−EX)2=E{E[(X−EX)2∣Y]}=E(Var(X∣Y))Var⁡(X)=E⁡(X−E⁡X)2=E⁡{E⁡[(X−E⁡X)2∣Y]}=E⁡(Var⁡(X∣Y)) \begin{equation} \begin{aligned} \operatorname{Var}(X) &= \operatorname{E}(X - \operatorname{E}X)^2 \\ &= \operatorname{E}\left\{\operatorname{E}\left[(X - \operatorname{E}X)^2\mid Y\right]\right\} \\ &= \operatorname{E}(\operatorname{Var}(X\mid Y)) \end{aligned} \end{equation} Was stimmt damit nicht?


2
Varianz des Maximums der Gaußschen Zufallsvariablen
Wenn Zufallsvariablen aus , definieren Sie X1,X2,⋯,XnX1,X2,⋯,XnX_1,X_2, \cdots, X_n∼N(0,σ2)∼N(0,σ2)\sim \mathcal{N}(0, \sigma^2)Z=maxi∈{1,2,⋯,n}XiZ=maxi∈{1,2,⋯,n}XiZ = \max_{i \in \{1,2,\cdots, n \}} X_i Wir haben das E[Z]≤σ2logn−−−−−√E[Z]≤σ2log⁡n\mathbb{E}[Z] \le \sigma \sqrt{2 \log n} . Ich habe mich gefragt, ob es Ober- / Untergrenzen für Var(Z)Var(Z)\text{Var}(Z) .



1
Verwirrung in Bezug auf die Absacktechnik
Ich bin ein bisschen verwirrt. Ich habe dieses Papier gelesen, in dem erklärt wurde, dass die Absacktechnik die Varianz stark verringert und die Vorspannung nur geringfügig erhöht. Ich habe es nicht verstanden, warum es die Varianz reduziert. Ich weiß, was Varianz und Voreingenommenheit sind. Bias ist die Unfähigkeit des Modells, …

1
Was ist mit der Heterogenität der Varianz zu tun, wenn die Streuung mit größeren angepassten Werten abnimmt?
Ich versuche ein lineares gemischtes Modell zu erzeugen. Der R-Code lautet wie folgt. lme (Average.payoff ~ Spiel + Typ + Andere.Typ + Spiel: Typ + Spiel: Andere.Typ + Typ: Andere.Typ, zufällig = ~ 1 | Subjekte, Methode = "REML", Daten = Subjektsm1) -> lme1 Der Antwortterm Average.payoff ist stetig, während …

3
Warum ist die Varianz von 2SLS größer als die von OLS?
... Ein weiteres potenzielles Problem bei der Anwendung von 2SLS- und anderen IV-Verfahren besteht darin, dass die 2SLS-Standardfehler tendenziell "groß" sind. Mit dieser Aussage ist normalerweise gemeint, dass entweder 2SLS-Koeffizienten statistisch nicht signifikant sind oder dass der 2SLS-Standard Fehler sind viel größer als die OLS-Standardfehler. Es überrascht nicht, dass die …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.