Als «standard-error» getaggte Fragen

Bezieht sich auf die Standardabweichung der Stichprobenverteilung einer aus einer Stichprobe berechneten Statistik. Standardfehler sind häufig erforderlich, wenn Konfidenzintervalle gebildet oder Hypothesen über die Population getestet werden, aus der die Statistik entnommen wurde.




3
Ein Beispiel: LASSO-Regression unter Verwendung von glmnet für binäre Ergebnisse
Ich beginne mit der Verwendung von dabble glmnetmit LASSO Regression , wo mein Ergebnis von Interesse dichotomous ist. Ich habe unten einen kleinen nachgebildeten Datenrahmen erstellt: age <- c(4, 8, 7, 12, 6, 9, 10, 14, 7) gender <- c(1, 0, 1, 1, 1, 0, 1, 0, 0) bmi_p <- …
77 r  self-study  lasso  regression  interpretation  anova  statistical-significance  survey  conditional-probability  independence  naive-bayes  graphical-model  r  time-series  forecasting  arima  r  forecasting  exponential-smoothing  bootstrap  outliers  r  regression  poisson-distribution  zero-inflation  genetic-algorithms  machine-learning  feature-selection  cart  categorical-data  interpretation  descriptive-statistics  variance  multivariate-analysis  covariance-matrix  r  data-visualization  generalized-linear-model  binomial  proportion  pca  matlab  svd  time-series  correlation  spss  arima  chi-squared  curve-fitting  text-mining  zipf  probability  categorical-data  distance  group-differences  bhattacharyya  regression  variance  mean  data-visualization  variance  clustering  r  standard-error  association-measure  somers-d  normal-distribution  integral  numerical-integration  bayesian  clustering  python  pymc  nonparametric-bayes  machine-learning  svm  kernel-trick  hyperparameter  poisson-distribution  mean  continuous-data  univariate  missing-data  dag  python  likelihood  dirichlet-distribution  r  anova  hypothesis-testing  statistical-significance  p-value  rating  data-imputation  censoring  threshold 

2
Form des Konfidenzintervalls für vorhergesagte Werte in der linearen Regression
Ich habe festgestellt, dass das Konfidenzintervall für vorhergesagte Werte in einer linearen Regression um den Mittelwert des Prädiktors und Fett um den minimalen und den maximalen Wert des Prädiktors eng ist. Dies ist in den Diagrammen dieser 4 linearen Regressionen zu sehen: Anfangs dachte ich, dies liege daran, dass die …

6
Standardfehler für die Lasso-Vorhersage mit R
Ich versuche, ein LASSO-Modell für die Vorhersage zu verwenden, und ich muss Standardfehler abschätzen. Sicher hat schon jemand ein Paket dazu geschrieben. Aber meines Erachtens gibt keines der CRAN-Pakete, die mit einem LASSO Vorhersagen treffen, Standardfehler für diese Vorhersagen zurück. Meine Frage lautet also: Gibt es ein Paket oder einen …


1
Quantile Regression: Welche Standardfehler?
Die summary.rqFunktion aus der Quantreg-Vignette bietet eine Vielzahl von Auswahlmöglichkeiten für Standardfehlerschätzungen von Quantilregressionskoeffizienten . In welchen speziellen Szenarien wird jedes dieser Szenarien optimal / wünschenswert? "rank", das Konfidenzintervalle für die geschätzten Parameter erzeugt, indem ein Rangtest wie in Koenker (1994) beschrieben invertiert wird. Die Standardoption setzt voraus, dass die …

3
Was ist ein Reststandardfehler?
Beim Ausführen eines Mehrfachregressionsmodells in R ist eine der Ausgaben ein Reststandardfehler von 0,0589 bei 95.161 Freiheitsgraden. Ich weiß, dass die 95.161 Freiheitsgrade durch die Differenz zwischen der Anzahl der Beobachtungen in meiner Stichprobe und der Anzahl der Variablen in meinem Modell gegeben sind. Was ist der Reststandardfehler?


5
Umgang mit hierarchischen / verschachtelten Daten beim maschinellen Lernen
Ich werde mein Problem mit einem Beispiel erklären. Angenommen, Sie möchten das Einkommen einer Person anhand einiger Attribute vorhersagen: {Alter, Geschlecht, Land, Region, Stadt}. Sie haben einen Trainingsdatensatz wie diesen train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", "M","F","M","F", "F","F","F","M")), Income=c(31,42,71,65, 50,51,101,38, 47,50,55,23)) …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 


3
R: Zufällige Gesamtstruktur, die NaN / Inf im Fehler "fremder Funktionsaufruf" trotz fehlender NaNs im Datensatz auslöst [geschlossen]
Ich verwende Caret, um eine kreuzvalidierte zufällige Gesamtstruktur über ein Dataset auszuführen. Die Y-Variable ist ein Faktor. In meinem Datensatz befinden sich keine NaNs, Infs oder NAs. Allerdings bekomme ich, wenn ich den zufälligen Wald laufen lasse Error in randomForest.default(m, y, ...) : NA/NaN/Inf in foreign function call (arg 1) …


3
Wie kann ich die Fehlerquote in einem NPS-Ergebnis (Net Promoter Score) berechnen?
Ich werde Wikipedia erklären lassen, wie NPS berechnet wird: Der Net Promoter Score wird erhalten, indem Kunden auf einer Bewertungsskala von 0 bis 10 eine einzelne Frage gestellt werden, wobei 10 "äußerst wahrscheinlich" und 0 "überhaupt nicht wahrscheinlich" ist: "Wie wahrscheinlich ist es, dass Sie unser Unternehmen einem empfehlen würden …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.