Als «lme4-nlme» getaggte Fragen

lme4 und nlme sind R-Pakete, die zum Anpassen linearer, verallgemeinerter linearer und nichtlinearer Modelle mit gemischten Effekten verwendet werden. Verwenden Sie für allgemeine Fragen zu gemischten Modellen das Tag [gemischtes Modell].

1
Schreiben der mathematischen Gleichung für ein Modell mit gemischten Effekten auf mehreren Ebenen
Die Frage zum Lebenslauf Ich versuche, (eine) detaillierte und präzise mathematische Darstellung (en) eines gemischten Effektmodells zu geben. Ich verwende das lme4Paket in R. Was ist die richtige mathematische Darstellung für mein Modell? Die Daten, die wissenschaftliche Frage und der R-Code Mein Datensatz besteht aus Arten in verschiedenen Regionen. Ich …

1
Was ist die Intuition hinter austauschbaren Proben unter der Nullhypothese?
Permutationstests (auch Randomisierungstest, Re-Randomisierungstest oder exakter Test genannt) sind sehr nützlich und nützlich, wenn die zum Beispiel erforderliche Annahme einer Normalverteilung t-testnicht erfüllt ist und wenn die Transformation der Werte durch Rangfolge der Werte erfolgt Ein nicht parametrischer Test Mann-Whitney-U-testwürde dazu führen, dass mehr Informationen verloren gehen. Eine einzige Annahme, …
15 hypothesis-testing  permutation-test  exchangeability  r  statistical-significance  loess  data-visualization  normal-distribution  pdf  ggplot2  kernel-smoothing  probability  self-study  expected-value  normal-distribution  prior  correlation  time-series  regression  heteroscedasticity  estimation  estimators  fisher-information  data-visualization  repeated-measures  binary-data  panel-data  mathematical-statistics  coefficient-of-variation  normal-distribution  order-statistics  regression  machine-learning  one-class  probability  estimators  forecasting  prediction  validation  finance  measurement-error  variance  mean  spatial  monte-carlo  data-visualization  boxplot  sampling  uniform  chi-squared  goodness-of-fit  probability  mixture  theory  gaussian-mixture  regression  statistical-significance  p-value  bootstrap  regression  multicollinearity  correlation  r  poisson-distribution  survival  regression  categorical-data  ordinal-data  ordered-logit  regression  interaction  time-series  machine-learning  forecasting  cross-validation  binomial  multiple-comparisons  simulation  false-discovery-rate  r  clustering  frequency  wilcoxon-mann-whitney  wilcoxon-signed-rank  r  svm  t-test  missing-data  excel  r  numerical-integration  r  random-variable  lme4-nlme  mixed-model  weighted-regression  power-law  errors-in-variables  machine-learning  classification  entropy  information-theory  mutual-information 

1
Warum kann ich die Ausgabe von glmer (family = binomial) nicht mit der manuellen Implementierung des Gauss-Newton-Algorithmus abgleichen?
Ich möchte die Ausgaben von lmer (wirklich glmer) mit einem Spielzeugbinomialbeispiel abgleichen. Ich habe die Vignetten gelesen und glaube zu verstehen, was los ist. Aber anscheinend mache ich nicht. Nachdem ich stecken geblieben war, habe ich die "Wahrheit" in Bezug auf die zufälligen Effekte korrigiert und mich nur um die …

1
Wie wirken sich zufällige Effekte mit nur einer Beobachtung auf ein verallgemeinertes lineares Mischmodell aus?
Ich habe einen Datensatz, in dem die Variable, die ich als Zufallseffekt verwenden möchte, für einige Ebenen nur eine einzige Beobachtung enthält. Aufgrund der Antworten auf vorherige Fragen habe ich festgestellt, dass dies im Prinzip in Ordnung sein kann. Kann ich ein gemischtes Modell mit Motiven kombinieren, bei denen nur …



2
LME () Fehler - Iterationslimit erreicht
Bei der Angabe eines Modells mit gekreuzten gemischten Effekten versuche ich, Wechselwirkungen einzubeziehen. Es wird jedoch folgende Fehlermeldung angezeigt: Error in lme.formula(rate ~ nozzle, random = ~nozzle | operator, data = Flow) : nlminb problem, convergence error code = 1 message = iteration limit reached without convergence (10) Das Modell …

1
Interpretieren der Regressionsausgabe aus einem gemischten Modell, wenn Interaktionen zwischen kategorialen Variablen enthalten sind
Ich habe eine Frage zu meiner Verwendung eines gemischten Modells / Modells. Das Grundmodell ist folgendes: lmer(DV ~ group * condition + (1|pptid), data= df) Gruppe und Bedingung sind beide Faktoren: Die Gruppe hat zwei Ebenen (GruppeA, GruppeB) und die Bedingung hat drei Ebenen (Bedingung1, Bedingung2, Bedingung3). Es sind Daten …

1
Wie man Varianzkomponenten mit lmer für Modelle mit zufälligen Effekten schätzt und mit lme-Ergebnissen vergleicht
Ich habe ein Experiment durchgeführt, bei dem ich verschiedene Familien aus zwei verschiedenen Bevölkerungsgruppen großgezogen habe. Jede Familie erhielt eine von zwei Behandlungen. Nach dem Experiment habe ich mehrere Merkmale an jedem Individuum gemessen. Um die Wirkung einer Behandlung oder einer Quelle sowie deren Wechselwirkung zu testen, verwendete ich ein …
14 r  anova  variance  lme4-nlme 


1
Lineare Mixed-Effects-Modellierung mit Zwillingsstudiendaten
Angenommen, ich habe eine Antwortvariable yijyijy_{ij} , die vom jjj ten Geschwister in der iii ten Familie gemessen wurde . Darüber hinaus sind einige Verhaltensdaten xijxijx_{ij} in der gleichen Zeit von jedem Probanden erhoben wurden. Ich versuche die Situation mit dem folgenden linearen Mixed-Effects-Modell zu analysieren: yij=α0+α1xij+δ1ixij+εijyij=α0+α1xij+δ1ixij+εijy_{ij} = \alpha_0 + …

4
Schätzung des Bruchpunktes in einem gebrochenen Stab / stückweise linearen Modell mit zufälligen Effekten in R [Code und Ausgabe enthalten]
Kann mir bitte jemand sagen, wie R den Bruchpunkt in einem stückweisen linearen Modell (als fester oder zufälliger Parameter) abschätzen soll, wenn ich auch andere zufällige Effekte abschätzen muss? Im Folgenden ist ein Spielzeugbeispiel aufgeführt, das eine Hockeyschläger- / gebrochener-Schläger-Regression mit zufälligen Steigungsabweichungen und einer zufälligen y-Achsenabschnittsabweichung für einen Bruchpunkt …


1
Äquivalenz von (0 + Faktor | Gruppe) und (1 | Gruppe) + (1 | Gruppe: Faktor) Zufallseffektspezifikationen bei zusammengesetzter Symmetrie
Douglas Bates gibt an, dass die folgenden Modelle äquivalent sind, "wenn die Varianz-Kovarianz-Matrix für die vektorwertigen Zufallseffekte eine spezielle Form hat, die als zusammengesetzte Symmetrie bezeichnet wird" ( Folie 91 in dieser Präsentation ): m1 <- lmer(y ~ factor + (0 + factor|group), data) m2 <- lmer(y ~ factor + …


Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.