Als «distributions» getaggte Fragen

Eine Verteilung ist eine mathematische Beschreibung von Wahrscheinlichkeiten oder Häufigkeiten.


5
Strategien zum Unterrichten der Stichprobenverteilung
The tl; dr version Welche erfolgreichen Strategien setzen Sie ein, um die Stichprobenverteilung (z. B. eines Stichprobenmittelwerts) in einem Grundstudium zu vermitteln? Der Hintergrund Im September unterrichte ich einen Einführungskurs in Statistik für Studierende der Sozialwissenschaften (hauptsächlich Politikwissenschaft und Soziologie) im zweiten Studienjahr unter Verwendung der grundlegenden Statistikpraxis von David …


5
Gibt es eine Erklärung dafür, warum es so viele natürliche Phänomene gibt, die der Normalverteilung folgen?
Ich halte das für ein faszinierendes Thema und verstehe es nicht ganz. Welches physikalische Gesetz bewirkt, dass so viele Naturphänomene normalverteilt sind? Es wäre intuitiver, wenn sie gleich verteilt wären. Es ist so schwer für mich, das zu verstehen, und ich habe das Gefühl, dass mir einige Informationen fehlen. Kann …

4
Wo ist die Graphentheorie in grafischen Modellen?
Einführungen in grafische Modelle beschreiben sie als "... eine Verbindung zwischen Graphentheorie und Wahrscheinlichkeitstheorie". Ich verstehe den Teil der Wahrscheinlichkeitstheorie, habe aber Probleme zu verstehen, wo genau die Graphentheorie hineinpasst. Welche Erkenntnisse aus der Graphentheorie haben dazu beigetragen, unser Verständnis der Wahrscheinlichkeitsverteilungen und der Entscheidungsfindung unter Ungewissheit zu vertiefen? Ich …

5
Umgang mit hierarchischen / verschachtelten Daten beim maschinellen Lernen
Ich werde mein Problem mit einem Beispiel erklären. Angenommen, Sie möchten das Einkommen einer Person anhand einiger Attribute vorhersagen: {Alter, Geschlecht, Land, Region, Stadt}. Sie haben einen Trainingsdatensatz wie diesen train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", "M","F","M","F", "F","F","F","M")), Income=c(31,42,71,65, 50,51,101,38, 47,50,55,23)) …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 


3
Wie unterscheidet sich die Poisson-Verteilung von der Normalverteilung?
Ich habe einen Vektor mit einer Poisson-Verteilung wie folgt generiert: x = rpois(1000,10) Wenn ich ein Histogramm mit mache hist(x), sieht die Verteilung wie eine bekannte glockenförmige Normalverteilung aus. Ein Kolmogorov-Smirnoff-Test zeigt jedoch, ks.test(x, 'pnorm',10,3)dass sich die Verteilung aufgrund des sehr geringen pWerts erheblich von einer Normalverteilung unterscheidet . Meine …


3
R: Zufällige Gesamtstruktur, die NaN / Inf im Fehler "fremder Funktionsaufruf" trotz fehlender NaNs im Datensatz auslöst [geschlossen]
Ich verwende Caret, um eine kreuzvalidierte zufällige Gesamtstruktur über ein Dataset auszuführen. Die Y-Variable ist ein Faktor. In meinem Datensatz befinden sich keine NaNs, Infs oder NAs. Allerdings bekomme ich, wenn ich den zufälligen Wald laufen lasse Error in randomForest.default(m, y, ...) : NA/NaN/Inf in foreign function call (arg 1) …



1
Maximum-Likelihood-Schätzer für eine abgeschnittene Verteilung
Man betrachte unabhängige Stichproben die aus einer Zufallsvariablen , von der angenommen wird, dass sie einer abgeschnittenen Verteilung (z. B. einer abgeschnittenen Normalverteilung ) bekannter (endlicher) Minimal- und Maximalwerte und aber unbekannter Parameter und folgen . Wenn einer nicht abgeschnittenen Verteilung folgt, wären die Maximum-Likelihood-Schätzer und für und aus der …



Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.