Support Vector Machine bezieht sich auf "eine Reihe verwandter überwachter Lernmethoden, die Daten analysieren und Muster erkennen, die für die Klassifizierungs- und Regressionsanalyse verwendet werden".
Ich habe einen stark unausgeglichenen Testdatensatz. Die positive Menge besteht aus 100 Fällen, während die negative Menge aus 1500 Fällen besteht. Auf der Trainingsseite habe ich einen größeren Kandidatenpool: Der positive Trainingssatz umfasst 1200 Fälle und der negative Trainingssatz umfasst 12000 Fälle. Für diese Art von Szenario habe ich mehrere …
Ich bin also ein Neuling im ML-Bereich und versuche, eine Einteilung vorzunehmen. Mein Ziel ist es, den Ausgang eines Sportereignisses vorherzusagen. Ich habe einige historische Daten gesammelt und versuche nun, einen Klassifikator zu trainieren. Ich habe ungefähr 1200 Proben erhalten, 0,2 davon habe ich zu Testzwecken abgespalten, andere habe ich …
Ich habe einen Datensatz von 120 Proben in einer 10-fachen Kreuzvalidierungseinstellung. Derzeit wähle ich die Trainingsdaten des ersten Holdouts aus und führe eine 5-fache Kreuzvalidierung durch, um die Werte von Gamma und C durch Gittersuche zu ermitteln. Ich verwende SVM mit RBF-Kernel. Führen Sie diese Rastersuche in den Trainingsdaten jedes …
Eher eine allgemeine Frage. Ich verwende eine rbf-SVM für die vorhersagende Modellierung. Ich denke, mein aktuelles Programm muss definitiv etwas beschleunigt werden. Ich benutze Scikit Learn mit einer Grob- bis Feinrastersuche + Kreuzvalidierung. Jeder SVM-Lauf dauert ungefähr eine Minute, aber bei all den Iterationen finde ich es immer noch zu …
Ich möchte versuchen, Support Vector Machines (SVMs) für mein Dataset zu verwenden. Bevor ich das Problem versuchte, wurde ich gewarnt, dass SVMs bei extrem unausgeglichenen Daten keine gute Leistung bringen. In meinem Fall kann ich bis zu 95-98% 0 und 2-5% 1 haben. Ich habe versucht, Ressourcen zu finden, bei …
Permutationstests (auch Randomisierungstest, Re-Randomisierungstest oder exakter Test genannt) sind sehr nützlich und nützlich, wenn die zum Beispiel erforderliche Annahme einer Normalverteilung t-testnicht erfüllt ist und wenn die Transformation der Werte durch Rangfolge der Werte erfolgt Ein nicht parametrischer Test Mann-Whitney-U-testwürde dazu führen, dass mehr Informationen verloren gehen. Eine einzige Annahme, …
Also habe ich mit SVMs rumgespielt und ich frage mich, ob das eine gute Sache ist: Ich habe eine Reihe von fortlaufenden Features (0 bis 1) und eine Reihe von kategorialen Features, die ich in Dummy-Variablen konvertiert habe. In diesem speziellen Fall codiere ich das Datum der Messung in eine …
Bei der Durchführung der linearen SVM-Klassifizierung ist es häufig hilfreich, die Trainingsdaten zu normalisieren, indem beispielsweise der Mittelwert subtrahiert und durch die Standardabweichung dividiert wird, und anschließend die Testdaten mit dem Mittelwert und der Standardabweichung der Trainingsdaten zu skalieren. Warum ändert dieser Prozess die Klassifizierungsleistung dramatisch?
Die Stellen, die ich über den Fluch der Dimensionalität gelesen habe, erklären ihn hauptsächlich in Verbindung mit kNN und linearen Modellen im Allgemeinen. Ich sehe regelmäßig Spitzenreiter in Kaggle, die Tausende von Funktionen in einem Datensatz verwenden, der kaum 100.000 Datenpunkte enthält. Sie verwenden unter anderem hauptsächlich Boosted-Bäume und NN. …
In meinem Projekt möchte ich ein logistisches Regressionsmodell zur Vorhersage der binären Klassifikation (1 oder 0) erstellen. Ich habe 15 Variablen, von denen 2 kategorisch sind, während der Rest eine Mischung aus kontinuierlichen und diskreten Variablen ist. Um ein logistisches Regressionsmodell anzupassen, wurde mir geraten, die lineare Trennbarkeit entweder mit …
Warum heißen sie "Maschinen"? Gibt es einen Ursprung für das in diesem Zusammenhang verwendete Wort "Maschine"? (Wie der Name "lineare Programmierung" verwirrend sein kann, aber wir wissen, warum es "Programmierung" heißt.)
Ich versuche die Intuition hinter den SVMs des Kernels zu verstehen. Jetzt verstehe ich, wie linear SVM funktioniert, wobei eine Entscheidungslinie erstellt wird, die die Daten so gut wie möglich aufteilt. Ich verstehe auch das Prinzip der Portierung von Daten in einen höherdimensionalen Raum und wie dies das Finden einer …
Der Scharnierverlust kann mit und der logarithmische Verlust mit log ( 1 + exp ( - y i w T x i ) ) definiert werden.max(0,1−yiwTxi)max(0,1−yiwTxi)\text{max}(0, 1-y_i\mathbf{w}^T\mathbf{x}_i)log(1+exp(−yiwTxi))log(1+exp(−yiwTxi))\text{log}(1 + \exp(-y_i\mathbf{w}^T\mathbf{x}_i)) Ich habe folgende Fragen: Gibt es Nachteile des Scharnierverlusts (z. B. empfindlich gegenüber Ausreißern, wie in http://www.unc.edu/~yfliu/papers/rsvm.pdf erwähnt )? Was sind …
Ich weiß, dass die logistische Regression eine Hyperebene findet, die die Trainingsmuster trennt. Ich weiß auch, dass Support-Vektor-Maschinen die Hyperebene mit der maximalen Marge finden. Meine Frage: Ist der Unterschied zwischen logistischer Regression (LR) und Support Vector Machines (SVM), dass LR eine Hyperebene findet, die die Trainingsmuster trennt, während SVM …
Bewältigt SVM einen unausgeglichenen Datensatz? Sind das irgendwelche Parameter (wie C oder Fehlklassifizierungskosten), die mit dem unausgeglichenen Datensatz umgehen?
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.