Als «regression» getaggte Fragen

Techniken zum Analysieren der Beziehung zwischen einer (oder mehreren) "abhängigen" Variablen und "unabhängigen" Variablen.


1
One-Hot vs Dummy-Codierung in Scikit-Learn
Es gibt zwei verschiedene Möglichkeiten, kategoriale Variablen zu codieren. Angenommen, eine kategoriale Variable hat n Werte. One-Hot-Codierung konvertiert es in n Variablen, während Dummy-Codierung es in n-1 Variablen konvertiert . Wenn wir k kategoriale Variablen haben, von denen jede n Werte hat. Eine heiße Codierung endet mit kn- Variablen, während …

2
Gibt es einen Unterschied zwischen "Steuern auf" und "Ignorieren" anderer Variablen bei multipler Regression?
Der Koeffizient einer erklärenden Variablen in einer multiplen Regression gibt Aufschluss über die Beziehung dieser erklärenden Variablen zur abhängigen Variablen. All dies, während für die anderen erklärenden Variablen 'steuern'. Wie ich es bisher gesehen habe: Während jeder Koeffizient berechnet wird, werden die anderen Variablen nicht berücksichtigt, so dass ich sie …

4
Warum entspricht ANOVA der linearen Regression?
Ich habe gelesen, dass ANOVA und lineare Regression dasselbe sind. Wie kann das sein, wenn man bedenkt, dass die Ausgabe von ANOVA ein Wert und ein Wert ist, auf deren Grundlage Sie schließen, ob die Stichprobenmittelwerte über die verschiedenen Stichproben hinweg gleich oder unterschiedlich sind.pFFFppp Unter der Annahme, dass die …
50 regression  anova 



7
Wo fange ich mit Statistiken für einen erfahrenen Entwickler an?
In der ersten Jahreshälfte 2015 habe ich den Coursera-Kurs für maschinelles Lernen (von Andrew Ng, GREAT-Kurs) absolviert. Und lernte die Grundlagen des maschinellen Lernens (lineare Regression, logistische Regression, SVM, Neuronale Netze ...) Außerdem bin ich seit 10 Jahren Entwickler, sodass das Erlernen einer neuen Programmiersprache kein Problem darstellt. In letzter …


2
Passen Splines die Daten übermäßig an?
Mein Problem : Ich habe kürzlich einen Statistiker getroffen, der mir mitteilte, dass Splines nur zum Durchsuchen von Daten nützlich sind und einer Überanpassung unterliegen und daher für die Vorhersage nicht hilfreich sind. Er zog es vor, mit einfachen Polynomen zu erforschen ... Da ich ein großer Fan von Splines …

5
Wenn der t-Test und die ANOVA für zwei Gruppen gleich sind, warum sind ihre Annahmen nicht gleich?
Ich bin mir sicher, dass ich das komplett um meinen Kopf gewickelt habe, aber ich kann es einfach nicht herausfinden. Der t-Test vergleicht zwei Normalverteilungen mit der Z-Verteilung. Aus diesem Grund wird bei den DATEN von Normalität ausgegangen. ANOVA entspricht einer linearen Regression mit Dummy-Variablen und verwendet wie OLS Quadratsummen. …

5
Regressionen verstehen - die Rolle des Modells
Wie kann ein Regressionsmodell von Nutzen sein, wenn Sie die Funktion nicht kennen, für die Sie die Parameter abrufen möchten? Ich habe eine Studie gesehen, aus der hervorgeht, dass Mütter, die ihre Kinder gestillt haben, im späteren Leben mit geringerer Wahrscheinlichkeit an Diabetes leiden. Die Untersuchung wurde aus einer Umfrage …



3
Interpretation des log transformierten Prädiktors und / oder der Antwort
Ich frage mich, ob es einen Unterschied in der Interpretation macht, ob nur die abhängigen, sowohl die abhängigen als auch die unabhängigen Variablen oder nur die unabhängigen Variablen log-transformiert werden. Betrachten Sie den Fall von log(DV) = Intercept + B1*IV + Error Ich kann die IV als prozentuale Erhöhung interpretieren, …
46 regression  data-transformation  interpretation  regression-coefficients  logarithm  r  dataset  stata  hypothesis-testing  contingency-tables  hypothesis-testing  statistical-significance  standard-deviation  unbiased-estimator  t-distribution  r  functional-data-analysis  maximum-likelihood  bootstrap  regression  change-point  regression  sas  hypothesis-testing  bayesian  randomness  predictive-models  nonparametric  terminology  parametric  correlation  effect-size  loess  mean  pdf  quantile-function  bioinformatics  regression  terminology  r-squared  pdf  maximum  multivariate-analysis  references  data-visualization  r  pca  r  mixed-model  lme4-nlme  distributions  probability  bayesian  prior  anova  chi-squared  binomial  generalized-linear-model  anova  repeated-measures  t-test  post-hoc  clustering  variance  probability  hypothesis-testing  references  binomial  profile-likelihood  self-study  excel  data-transformation  skewness  distributions  statistical-significance  econometrics  spatial  r  regression  anova  spss  linear-model 

3
Woher kommt der Irrtum, dass Y normalverteilt sein muss?
Scheinbar seriöse Quellen behaupten, dass die abhängige Variable normal verteilt sein muss: Modellannahmen: ist normalverteilt, Fehler sind normalverteilt, und unabhängig, und ist fest und konstante Varianz .YYYei∼N(0,σ2)ei∼N(0,σ2)e_i \sim N(0,\sigma^2)XXXσ2σ2\sigma^2 Penn State, STAT 504 Analyse diskreter Daten Zweitens erfordert die lineare Regressionsanalyse, dass alle Variablen multivariate Normalen sind. StatisticsSolutions, Annahmen der …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.