Als «likelihood» getaggte Fragen

Bei einer Zufallsvariablen die sich aus einer parametrisierten Verteilung F (X; θ) ergibt, ist die Wahrscheinlichkeit als die Wahrscheinlichkeit beobachteter Daten als Funktion von θ definiert: \ text {L} (θ) = \ text {P} (θ) ; X = x)XF(X;θ)θ:L(θ)=P(θ;X=x)

2
Hessischer Wert der Profilwahrscheinlichkeit, der für die Standardfehlerschätzung verwendet wird
Diese Frage ist von dieser motiviert . Ich habe zwei Quellen nachgeschlagen und das habe ich gefunden. A. van der Vaart, Assymptotische Statistik: Es ist selten möglich, eine Profilwahrscheinlichkeit explizit zu berechnen, aber ihre numerische Auswertung ist oft machbar. Dann kann die Profilwahrscheinlichkeit dazu dienen, die Dimension der Wahrscheinlichkeitsfunktion zu …

2
Logistische Regression und Wahrscheinlichkeit verstehen
Wie funktioniert die Parameterschätzung / Training der logistischen Regression wirklich? Ich werde versuchen, das, was ich habe, so weit zu bringen. Die Ausgabe ist y die Ausgabe der logistischen Funktion in Form einer Wahrscheinlichkeit in Abhängigkeit vom Wert von x: P(y=1|x)=11+e−ωTx≡σ(ωTx)P(y=1|x)=11+e−ωTx≡σ(ωTx)P(y=1|x)={1\over1+e^{-\omega^Tx}}\equiv\sigma(\omega^Tx) P(y=0|x)=1−P(y=1|x)=1−11+e−ωTxP(y=0|x)=1−P(y=1|x)=1−11+e−ωTxP(y=0|x)=1-P(y=1|x)=1-{1\over1+e^{-\omega^Tx}} Für eine Dimension ist die sogenannte Quote wie …

5
Wie führt man eine Imputation von Werten in einer sehr großen Anzahl von Datenpunkten durch?
Ich habe einen sehr großen Datensatz und es fehlen ungefähr 5% zufällige Werte. Diese Variablen sind miteinander korreliert. Der folgende Beispiel-R-Datensatz ist nur ein Spielzeugbeispiel mit Dummy-korrelierten Daten. set.seed(123) # matrix of X variable xmat <- matrix(sample(-1:1, 2000000, replace = TRUE), ncol = 10000) colnames(xmat) <- paste ("M", 1:10000, sep …
12 r  random-forest  missing-data  data-imputation  multiple-imputation  large-data  definition  moving-window  self-study  categorical-data  econometrics  standard-error  regression-coefficients  normal-distribution  pdf  lognormal  regression  python  scikit-learn  interpolation  r  self-study  poisson-distribution  chi-squared  matlab  matrix  r  modeling  multinomial  mlogit  choice  monte-carlo  indicator-function  r  aic  garch  likelihood  r  regression  repeated-measures  simulation  multilevel-analysis  chi-squared  expected-value  multinomial  yates-correction  classification  regression  self-study  repeated-measures  references  residuals  confidence-interval  bootstrap  normality-assumption  resampling  entropy  cauchy  clustering  k-means  r  clustering  categorical-data  continuous-data  r  hypothesis-testing  nonparametric  probability  bayesian  pdf  distributions  exponential  repeated-measures  random-effects-model  non-independent  regression  error  regression-to-the-mean  correlation  group-differences  post-hoc  neural-networks  r  time-series  t-test  p-value  normalization  probability  moments  mgf  time-series  model  seasonality  r  anova  generalized-linear-model  proportion  percentage  nonparametric  ranks  weighted-regression  variogram  classification  neural-networks  fuzzy  variance  dimensionality-reduction  confidence-interval  proportion  z-test  r  self-study  pdf 


3
Warum wird die Wahrscheinlichkeit im Kalman-Filter anhand von Filterergebnissen anstelle glatterer Ergebnisse berechnet?
Ich benutze den Kalman-Filter ganz normal. Das System wird durch die Zustandsgleichung und die Beobachtungsgleichung .xt + 1= F.xt+ vt + 1xt+1=F.xt+vt+1x_{t+1}=Fx_{t}+v_{t+1}yt= H.xt+ A zt+ wtyt=H.xt+EINzt+wty_{t}=Hx_{t}+Az_{t}+w_{t} Lehrbücher lehren, dass wir nach dem Anwenden des Kalman-Filters und dem Abrufen der "One-Step-Ahead-Prognosen" (oder "gefilterte Schätzung") diese verwenden sollten, um die Wahrscheinlichkeitsfunktion zu …

3
Wahrscheinlichkeit vs. bedingte Verteilung für die Bayes'sche Analyse
Wir können den Satz von Bayes als schreiben p(θ|x)=f(X|θ)p(θ)∫θf(X|θ)p(θ)dθp(θ|x)=f(X|θ)p(θ)∫θf(X|θ)p(θ)dθp(\theta|x) = \frac{f(X|\theta)p(\theta)}{\int_{\theta} f(X|\theta)p(\theta)d\theta} wobei p(θ|x)p(θ|x)p(\theta|x) der hintere ist, f(X|θ)f(X|θ)f(X|\theta) die bedingte Verteilung ist und p(θ)p(θ)p(\theta) der Prior ist. oder p(θ|x)=L(θ|x)p(θ)∫θL(θ|x)p(θ)dθp(θ|x)=L(θ|x)p(θ)∫θL(θ|x)p(θ)dθp(\theta|x) = \frac{L(\theta|x)p(\theta)}{\int_{\theta} L(\theta|x)p(\theta)d\theta} wobei p(θ|x)p(θ|x)p(\theta|x) der hintere ist, L(θ|x)L(θ|x)L(\theta|x) die Wahrscheinlichkeitsfunktion ist und p(θ)p(θ)p(\theta) der Prior ist. Meine Frage ist Warum …


4
Maximum-Likelihood-Funktion für die Verteilung gemischter Typen
Im Allgemeinen maximieren wir eine Funktion L(θ;x1,…,xn)=∏i=1nf(xi∣θ)L(θ;x1,…,xn)=∏i=1nf(xi∣θ) L(\theta; x_1, \ldots, x_n) = \prod_{i=1}^n f(x_i \mid \theta) Dabei ist die Wahrscheinlichkeitsdichtefunktion, wenn die zugrunde liegende Verteilung kontinuierlich ist, und eine Wahrscheinlichkeitsmassenfunktion (mit Summation anstelle des Produkts), wenn die Verteilung diskret ist.fff Wie spezifizieren wir die Wahrscheinlichkeitsfunktion, wenn die zugrunde liegende Verteilung …


1
P-Werte und Wahrscheinlichkeitsprinzip
Diese Frage stellte sich im Unterricht: Wenn wir p-Werte verwenden, um Hypothesen für ein Experiment zu bewerten, welchen Teil des Wahrscheinlichkeitsprinzips befolgen wir nicht: Suffizienz oder Konditionalität ? Meine Intuition wäre, Suffizienz zu sagen , da die Berechnung eines p-Werts auf unbeobachteten Ergebnissen eines Experiments beruht und Suffizienz sich mehr …

4
Wie interpretiere ich eine Überlebenskurve des Cox-Hazard-Modells?
Wie interpretieren Sie eine Überlebenskurve aus dem Cox-Proportional-Hazard-Modell? Nehmen wir in diesem Spielzeugbeispiel an, wir haben ein Cox-Proportional-Hazard-Modell für ageVariablen in kidneyDaten und generieren die Überlebenskurve. library(survival) fit <- coxph(Surv(time, status)~age, data=kidney) plot(conf.int="none", survfit(fit)) grid() Welche Aussage ist zum Zeitpunkt zum Beispiel wahr? oder sind beide falsch?200200200 Statement 1: Wir …

1
Entspricht eine Bayes'sche Schätzung mit einem „Flat Prior“ einer Maximum-Likelihood-Schätzung?
In der Phylogenetik werden phylogenetische Bäume häufig mithilfe von MLE- oder Bayes'schen Analysen konstruiert. In der Bayes'schen Schätzung wird häufig ein flacher Prior verwendet. Nach meinem Verständnis ist eine Bayes'sche Schätzung eine Wahrscheinlichkeitsschätzung, die einen Prior enthält. Meine Frage ist, wenn Sie eine Wohnung vor verwenden, unterscheidet sie sich von …


2
Robuster MCMC-Schätzer der Grenzwahrscheinlichkeit?
Ich versuche, die Grenzwahrscheinlichkeit für ein statistisches Modell mit Monte-Carlo-Methoden zu berechnen: f( x ) = ∫f( x ∣ θ ) π( θ )dθf(x)=∫f(x∣θ)π(θ)dθf(x) = \int f(x\mid\theta) \pi(\theta)\, d\theta Die Wahrscheinlichkeit ist gut verhalten - glatt, logarithmisch konkav - aber hochdimensional. Ich habe versucht, wichtige Stichproben zu erstellen, aber die …


Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.