Als «libsvm» getaggte Fragen

LIBSVM ist eine integrierte Softwarebibliothek für Support-Vektor-Maschinen, die Support-Vektor-Klassifizierung (C-SVC, Nu-SVC), Regression (Epsilon-SVR, Nu-SVR) und Verteilungsschätzung (SVM einer Klasse) durchführt.

7
Welchen Einfluss hat C in SVMs mit linearem Kernel?
Ich verwende derzeit eine SVM mit einem linearen Kernel, um meine Daten zu klassifizieren. Es liegt kein Fehler im Trainingssatz vor. Ich habe verschiedene Werte für den Parameter ausprobiert ( ). Dies hat den Fehler im Test-Set nicht verändert.10 - 5 , … , 10 2CCC10- 5, … , 10210−5,…,10210^{-5}, …

2
libsvm Datenformat [geschlossen]
Ich verwende das Tool libsvm ( http://www.csie.ntu.edu.tw/~cjlin/libsvm/ ) zur Unterstützung der Vektorklassifizierung. Ich bin jedoch verwirrt über das Format der Eingabedaten. Aus der README: Das Format der Trainings- und Testdatendatei ist: <label> <index1>:<value1> <index2>:<value2> ... . . . Jede Zeile enthält eine Instanz und wird mit einem '\ n'-Zeichen abgeschlossen. …

1
Können Freiheitsgrade eine nicht ganzzahlige Zahl sein?
Wenn ich GAM verwende, erhalte ich einen DF-Rest von (letzte Zeile im Code). Was bedeutet das? Über das GAM-Beispiel hinausgehend: Kann die Anzahl der Freiheitsgrade im Allgemeinen eine nicht ganzzahlige Zahl sein?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) Deviance Residuals: Min 1Q Median …
27 r  degrees-of-freedom  gam  machine-learning  pca  lasso  probability  self-study  bootstrap  expected-value  regression  machine-learning  linear-model  probability  simulation  random-generation  machine-learning  distributions  svm  libsvm  classification  pca  multivariate-analysis  feature-selection  archaeology  r  regression  dataset  simulation  r  regression  time-series  forecasting  predictive-models  r  mean  sem  lavaan  machine-learning  regularization  regression  conv-neural-network  convolution  classification  deep-learning  conv-neural-network  regression  categorical-data  econometrics  r  confirmatory-factor  scale-invariance  self-study  unbiased-estimator  mse  regression  residuals  sampling  random-variable  sample  probability  random-variable  convergence  r  survival  weibull  references  autocorrelation  hypothesis-testing  distributions  correlation  regression  statistical-significance  regression-coefficients  univariate  categorical-data  chi-squared  regression  machine-learning  multiple-regression  categorical-data  linear-model  pca  factor-analysis  factor-rotation  classification  scikit-learn  logistic  p-value  regression  panel-data  multilevel-analysis  variance  bootstrap  bias  probability  r  distributions  interquartile  time-series  hypothesis-testing  normal-distribution  normality-assumption  kurtosis  arima  panel-data  stata  clustered-standard-errors  machine-learning  optimization  lasso  multivariate-analysis  ancova  machine-learning  cross-validation 

1
libsvm "Maximale Anzahl von Iterationen erreicht" Warnung und Kreuzvalidierung
Ich verwende libsvm im C-SVC-Modus mit einem Polynomkern der Stufe 2 und muss mehrere SVMs trainieren. Jedes Trainingsset enthält 10 Features und 5000 Vektoren. Während des Trainings erhalte ich diese Warnung für die meisten SVMs, die ich trainiere: WARNING: reaching max number of iterations optimization finished, #iter = 10000000 Könnte …

3
SVM für unausgeglichene Daten
Ich möchte versuchen, Support Vector Machines (SVMs) für mein Dataset zu verwenden. Bevor ich das Problem versuchte, wurde ich gewarnt, dass SVMs bei extrem unausgeglichenen Daten keine gute Leistung bringen. In meinem Fall kann ich bis zu 95-98% 0 und 2-5% 1 haben. Ich habe versucht, Ressourcen zu finden, bei …


1
Caret glmnet vs cv.glmnet
Es scheint eine Menge Verwirrung im Vergleich zwischen der Verwendung von glmnetinside caretzur Suche nach einem optimalen Lambda und der Verwendung cv.glmnetderselben Aufgabe zu geben. Viele Fragen wurden gestellt, zB: Klassifizierungsmodell train.glmnet vs. cv.glmnet? Was ist der richtige Weg, um glmnet mit caret zu verwenden? Quervalidierung von "glmnet" mit "caret" …

2
Problem mit e1071 libsvm?
Ich habe einen Datensatz mit zwei überlappenden Klassen, sieben Punkte in jeder Klasse, Punkte liegen im zweidimensionalen Raum. In R rufe ich svmdas e1071Paket auf, um eine separate Hyperebene für diese Klassen zu erstellen. Ich benutze den folgenden Befehl: svm(x, y, scale = FALSE, type = 'C-classification', kernel = 'linear', …

1
Fisher's Exact Test und hypergeometrische Verteilung
Ich wollte den genauen Test des Fischers besser verstehen, deshalb habe ich das folgende Spielzeugbeispiel entwickelt, bei dem f und m männlich und weiblich und n und y dem "Sodakonsum" wie folgt entsprechen: > soda_gender f m n 0 5 y 5 0 Dies ist natürlich eine drastische Vereinfachung, aber …

2
Die Ausgabe von Scikit SVM in der Klassifizierung mehrerer Klassen ergibt immer die gleiche Bezeichnung
Ich verwende derzeit Scikit Learn mit dem folgenden Code: clf = svm.SVC(C=1.0, tol=1e-10, cache_size=600, kernel='rbf', gamma=0.0, class_weight='auto') und passen Sie dann einen Datensatz mit 7 verschiedenen Beschriftungen an und sagen Sie ihn voraus. Ich habe eine seltsame Ausgabe. Unabhängig davon, welche Kreuzvalidierungstechnik ich verwende, wird das vorhergesagte Etikett auf dem …

4
Zeitdiskretes Ereignisverlaufsmodell (Überlebensmodell) in R.
Ich versuche, ein zeitdiskretes Modell in R einzubauen, bin mir aber nicht sicher, wie ich das machen soll. Ich habe gelesen, dass Sie die abhängige Variable in verschiedenen Zeilen organisieren können, eine für jede glmZeitbeobachtung , und die Funktion mit einem Logit- oder Cloglog-Link verwenden können. In diesem Sinne, ich …
10 r  survival  pca  sas  matlab  neural-networks  r  logistic  spatial  spatial-interaction-model  r  time-series  econometrics  var  statistical-significance  t-test  cross-validation  sample-size  r  regression  optimization  least-squares  constrained-regression  nonparametric  ordinal-data  wilcoxon-signed-rank  references  neural-networks  jags  bugs  hierarchical-bayesian  gaussian-mixture  r  regression  svm  predictive-models  libsvm  scikit-learn  probability  self-study  stata  sample-size  spss  wilcoxon-mann-whitney  survey  ordinal-data  likert  group-differences  r  regression  anova  mathematical-statistics  normal-distribution  random-generation  truncation  repeated-measures  variance  variability  distributions  random-generation  uniform  regression  r  generalized-linear-model  goodness-of-fit  data-visualization  r  time-series  arima  autoregressive  confidence-interval  r  time-series  arima  autocorrelation  seasonality  hypothesis-testing  bayesian  frequentist  uninformative-prior  correlation  matlab  cross-correlation 



Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.