Als «correlation» getaggte Fragen

Ein Maß für den Grad der linearen Assoziation zwischen einem Variablenpaar.

5
Korrelationen zwischen kontinuierlichen und kategorialen (nominalen) Variablen
Ich möchte die Korrelation zwischen einer kontinuierlichen (abhängigen Variablen) und einer kategorialen (nominal: Geschlecht, unabhängige Variable) Variablen finden. Fortlaufende Daten werden normalerweise nicht verteilt. Vorher hatte ich es mit dem Spearman's berechnet . Mir wurde jedoch gesagt, dass es nicht richtig ist.ρρ\rho Bei der Suche im Internet habe ich festgestellt, …

9
Korrelation impliziert keine Kausalität; aber was ist, wenn eine der Variablen die Zeit ist?
Ich weiß, dass diese Frage milliardenfach gestellt wurde, und bin daher nach einem Online-Blick fest davon überzeugt, dass die Korrelation zwischen zwei Variablen keine Kausalität impliziert. In einem meiner Statistikvorträge hatten wir heute einen Gastvortrag eines Physikers über die Bedeutung statistischer Methoden in der Physik. Er sagte eine erstaunliche Aussage: …


5
Beziehung zwischen und Korrelationskoeffizient
Angenommen, ich habe zwei eindimensionale Arrays, und . Jedes enthält 100 Datenpunkte. sind die tatsächlichen Daten und ist die Modellvorhersage. In diesem Fall wäre der Wert: In der Zwischenzeit wäre dies gleich dem Quadratwert des Korrelationskoeffizienten Wenn ich nun die beiden vertausche: sind die tatsächlichen Daten und ist die Modellvorhersage. …

9
Wie ist die Beziehung zwischen
Wie ist die Beziehung zwischen und in der folgenden Darstellung? Meiner Ansicht nach gibt es eine negative lineare Beziehung. Da wir jedoch viele Ausreißer haben, ist die Beziehung sehr schwach. Habe ich recht? Ich möchte lernen, wie wir Streudiagramme erklären können.XY.YYXXX

3
Unterschied zwischen zufälligen Wäldern und extrem zufälligen Bäumen
Ich habe verstanden, dass Random Forest und Extrem Randomized Trees sich dahingehend unterscheiden, dass die Aufteilung der Bäume im Random Forest deterministisch ist, wohingegen sie im Fall von Extrem Randomized Trees zufällig ist (genauer gesagt, die nächste Aufteilung ist die beste Aufteilung) unter zufälligen gleichmäßigen Aufteilungen in den ausgewählten Variablen …

1
Manuell berechnetes stimmt nicht mit randomForest () überein, um neue Daten zu testen
Ich weiß, dass dies eine ziemlich spezifische RFrage ist, aber ich denke möglicherweise falsch über die erklärte Proportionsvarianz . Hier geht.R2R2R^2 Ich versuche das RPaket zu benutzen randomForest. Ich habe einige Trainingsdaten und Testdaten. Wenn ich ein zufälliges Gesamtstrukturmodell anpasse, randomForestkönnen Sie mit dieser Funktion neue Testdaten zum Testen eingeben. …

1
Warum wird Mantels Test Morans vorgezogen?
Mantels Test wird häufig in biologischen Studien verwendet , um die Korrelation zwischen der räumlichen Verteilung von Tieren (Position im Raum) und beispielsweise ihrer genetischen Verwandtschaft, Aggressionsrate oder einem anderen Attribut zu untersuchen. Viele gute Fachzeitschriften verwenden es ( PNAS, Tierverhalten, Molekulare Ökologie ... ). Ich habe einige Muster hergestellt, …

2
Was ist zusammengesetzte Symmetrie in einfachem Englisch?
Kürzlich wurde mir klar, dass ein gemischtes Modell mit nur einem Subjekt als Zufallsfaktor und den anderen Faktoren als festen Faktoren einer ANOVA entspricht, wenn die Korrelationsstruktur des gemischten Modells auf zusammengesetzte Symmetrie eingestellt wird. Daher möchte ich wissen, was Verbindungssymmetrie im Kontext einer gemischten (dh aufgeteilten) ANOVA bedeutet, bestenfalls …


3
Warum gibt es einen Unterschied zwischen der manuellen Berechnung eines Konfidenzintervalls für eine logistische Regression von 95% und der Verwendung der Funktion confint () in R?
Sehr geehrte Damen und Herren, mir ist etwas Merkwürdiges aufgefallen, das ich Ihnen nicht erklären kann. Zusammenfassend lässt sich sagen, dass der manuelle Ansatz zur Berechnung eines Konfidenzintervalls in einem logistischen Regressionsmodell und die R-Funktion confint()unterschiedliche Ergebnisse liefern. Ich habe die angewandte logistische Regression von Hosmer & Lemeshow (2. Auflage) …
34 r  regression  logistic  confidence-interval  profile-likelihood  correlation  mcmc  error  mixture  measurement  data-augmentation  r  logistic  goodness-of-fit  r  time-series  exponential  descriptive-statistics  average  expected-value  data-visualization  anova  teaching  hypothesis-testing  multivariate-analysis  r  r  mixed-model  clustering  categorical-data  unsupervised-learning  r  logistic  anova  binomial  estimation  variance  expected-value  r  r  anova  mixed-model  multiple-comparisons  repeated-measures  project-management  r  poisson-distribution  control-chart  project-management  regression  residuals  r  distributions  data-visualization  r  unbiased-estimator  kurtosis  expected-value  regression  spss  meta-analysis  r  censoring  regression  classification  data-mining  mixture 

2
Varianz des Produkts abhängiger Variablen
Wie lautet die Formel für die Varianz des Produkts abhängiger Variablen? Bei unabhängigen Variablen ist die Formel einfach: var(XY)=E(X2Y2)−E(XY)2=var(X)var(Y)+var(X)E(Y)2+var(Y)E(X)2var(XY)=E(X2Y2)−E(XY)2=var(X)var(Y)+var(X)E(Y)2+var(Y)E(X)2 {\rm var}(XY) = E(X^{2}Y^{2}) - E(XY)^{2} = {\rm var}(X){\rm var}(Y) + {\rm var}(X)E(Y)^2 + {\rm var}(Y)E(X)^2 Aber wie lautet die Formel für korrelierte Variablen? Wie finde ich übrigens die Korrelation anhand …

6
Wenn 'Korrelation keine Kausalität impliziert', wie kann ich dann die Kausalität nachweisen, wenn ich eine statistisch signifikante Korrelation finde?
Ich verstehe, dass Korrelation keine Kausalität ist . Angenommen, wir erhalten eine hohe Korrelation zwischen zwei Variablen. Wie überprüfen Sie, ob diese Korrelation tatsächlich kausal bedingt ist? Oder können wir unter welchen Bedingungen genau experimentelle Daten verwenden, um einen Kausalzusammenhang zwischen zwei oder mehr Variablen herzuleiten?

5
Umgang mit hierarchischen / verschachtelten Daten beim maschinellen Lernen
Ich werde mein Problem mit einem Beispiel erklären. Angenommen, Sie möchten das Einkommen einer Person anhand einiger Attribute vorhersagen: {Alter, Geschlecht, Land, Region, Stadt}. Sie haben einen Trainingsdatensatz wie diesen train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", "M","F","M","F", "F","F","F","M")), Income=c(31,42,71,65, 50,51,101,38, 47,50,55,23)) …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 


Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.