Als «svd» getaggte Fragen

Singular Value Decomposition (SVD) einer Matrix EIN ist gegeben durch EIN=U.S.V. wo U. und V. sind orthogonale Matrizen und S. ist eine diagonale Matrix.

2
Warum kann ich keine gültige SVD von X durch Eigenwertzerlegung von XX 'und X'X erhalten?
Ich versuche SVD von Hand zu machen: m<-matrix(c(1,0,1,2,1,1,1,0,0),byrow=TRUE,nrow=3) U=eigen(m%*%t(m))$vector V=eigen(t(m)%*%m)$vector D=sqrt(diag(eigen(m%*%t(m))$values)) U1=svd(m)$u V1=svd(m)$v D1=diag(svd(m)$d) U1%*%D1%*%t(V1) U%*%D%*%t(V) Die letzte Zeile kehrt jedoch nicht mzurück. Warum? Es scheint etwas mit Anzeichen dieser Eigenvektoren zu tun zu haben ... Oder habe ich das Verfahren falsch verstanden?
9 r  svd  eigenvalues 


1
Eine Parallele zwischen LSA und pLSA
In der Originalarbeit von pLSA zeichnet der Autor Thomas Hoffman eine Parallele zwischen pLSA- und LSA-Datenstrukturen, die ich mit Ihnen diskutieren möchte. Hintergrund: Nehmen wir an, wir haben eine Sammlung von Dokumenten und ein Vokabular von BegriffenNNND={d1,d2,....,dN}D={d1,d2,....,dN}D = \lbrace d_1, d_2, ...., d_N \rbraceMMMΩ={ω1,ω2,...,ωM}Ω={ω1,ω2,...,ωM}\Omega = \lbrace \omega_1, \omega_2, ..., \omega_M …


1
Wie sind die Ergebnisse der Dimensionsreduktion / mehrdimensionalen Skalierung zu interpretieren?
Ich habe sowohl eine SVD-Zerlegung als auch eine mehrdimensionale Skalierung einer 6-dimensionalen Datenmatrix durchgeführt, um die Struktur der Daten besser zu verstehen. Leider sind alle Singularwerte in derselben Größenordnung, was bedeutet, dass die Dimensionalität der Daten tatsächlich 6 beträgt. Ich möchte jedoch die Werte der Singularvektoren interpretieren können. Zum Beispiel …


3
Ein konkretes Beispiel ist die Durchführung einer SVD, um fehlende Werte zu unterstellen
Ich habe die großartigen Kommentare zum Umgang mit fehlenden Werten vor dem Anwenden von SVD gelesen, möchte aber anhand eines einfachen Beispiels wissen, wie dies funktioniert: Movie1 Movie2 Movie3 User1 5 4 User2 2 5 5 User3 3 4 User4 1 5 User5 5 1 5 Wenn ich in der …
8 r  missing-data  data-imputation  svd  sampling  matlab  mcmc  importance-sampling  predictive-models  prediction  algorithms  graphical-model  graph-theory  r  regression  regression-coefficients  r-squared  r  regression  modeling  confounding  residuals  fitting  glmm  zero-inflation  overdispersion  optimization  curve-fitting  regression  time-series  order-statistics  bayesian  prior  uninformative-prior  probability  discrete-data  kolmogorov-smirnov  r  data-visualization  histogram  dimensionality-reduction  classification  clustering  accuracy  semi-supervised  labeling  state-space-models  t-test  biostatistics  paired-comparisons  paired-data  bioinformatics  regression  logistic  multiple-regression  mixed-model  random-effects-model  neural-networks  error-propagation  numerical-integration  time-series  missing-data  data-imputation  probability  self-study  combinatorics  survival  cox-model  statistical-significance  wilcoxon-mann-whitney  hypothesis-testing  distributions  normal-distribution  variance  t-distribution  probability  simulation  random-walk  diffusion  hypothesis-testing  z-test  hypothesis-testing  data-transformation  lognormal  r  regression  agreement-statistics  classification  svm  mixed-model  non-independent  observational-study  goodness-of-fit  residuals  confirmatory-factor  neural-networks  deep-learning 

1
SVD einer Datenmatrix (PCA) nach dem Glätten
Angenommen, ich habe eine zentrierte Datenmatrix mit SVD .n×mn×mn \times mAAAA=UΣVTA=UΣVTA = U \Sigma V^{T} Zum Beispiel Spalten (Messungen), die Spektren mit verschiedenen Frequenzen sind. Die Matrix ist zentriert, sodass der Mittelwert der Zeilen der Matrix abgezogen wird. Dies dient zur Interpretation der linken Singularvektoren als Hauptkomponenten.m=50m=50m=50n=100n=100n=100 Ich bin daran …
8 pca  smoothing  svd 

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.