Als «p-value» getaggte Fragen

Bei häufig auftretenden Hypothesentests wird die p-Wert ist die Wahrscheinlichkeit, dass ein Ergebnis extrem (oder höher) als das beobachtete Ergebnis ist, unter der Annahme, dass die Nullhypothese wahr ist.



2
P-Wert verstehen
Ich weiß, dass es viele Materialien gibt, die den p-Wert erklären. Das Konzept ist jedoch ohne weitere Klarstellung nicht leicht festzuhalten. Hier ist die Definition von p-Wert aus Wikipedia: Der p-Wert ist die Wahrscheinlichkeit, eine Teststatistik zu erhalten, die mindestens so extrem ist wie die tatsächlich beobachtete, unter der Annahme, …


2
Durchführen eines statistischen Tests nach der Datenvisualisierung - Datenbaggerung?
Ich werde diese Frage anhand eines Beispiels vorschlagen. Angenommen, ich habe einen Datensatz, z. B. den Preisdatensatz für Wohnimmobilien in Boston, in dem ich kontinuierliche und kategoriale Variablen habe. Hier haben wir eine "Qualitäts" -Variable von 1 bis 10 und den Verkaufspreis. Ich kann die Daten in Häuser mit "niedriger", …

4
Sind kleinere p-Werte überzeugender?
Ich habe mich über Werte, Typ 1-Fehlerraten, Signifikanzniveaus, Leistungsberechnungen, Effektgrößen und die Debatte zwischen Fisher und Neyman-Pearson informiert. Das hat mich ein bisschen überwältigt. Ich entschuldige mich für die Textwand, aber ich hielt es für notwendig, einen Überblick über mein derzeitiges Verständnis dieser Konzepte zu geben, bevor ich zu meinen …


4
Warum sprechen niedrigere p-Werte nicht mehr gegen die Null? Argumente von Johansson 2011
Johansson (2011) in „ Hail the unmöglich: p-Wert, Beweise und Wahrscheinlichkeit “ (hier ist auch Link zur Zeitschrift ) besagt , dass untere - Werte oft als stärkere Beweise gegen die Null betrachtet werden. Johansson impliziert, dass die Leute Beweise gegen die Null als stärker ansehen würden, wenn ihr statistischer …

3
Eingefestigte Ansichten von p-Werten
Manchmal füge ich in Berichten einen Haftungsausschluss zu den von mir bereitgestellten p-Werten und anderen Inferenzstatistiken ein. Ich sage, da die Stichprobe nicht zufällig war, galten solche Statistiken nicht unbedingt. Mein spezifischer Wortlaut wird normalerweise in einer Fußnote angegeben: "Während Inferenzstatistiken streng genommen nur im Zusammenhang mit Zufallsstichproben anwendbar sind, …

2
Wer hat p-Werte zuerst benutzt / erfunden?
Ich versuche, eine Reihe von Blog-Posts über p-Werte zu schreiben, und ich dachte, es wäre interessant, dorthin zurückzukehren, wo alles begann - das scheint Pearsons 1900-Papier zu sein. Wenn Sie mit diesem Papier vertraut sind, werden Sie sich daran erinnern, dass dies das Testen der Anpassungsgüte umfasst. Pearson ist ein …

5
Wie sollte ein einzelner Forscher über die Rate falscher Entdeckungen denken?
Ich habe versucht, mir Gedanken darüber zu machen, wie die False Discovery Rate (FDR) die Schlussfolgerungen des einzelnen Forschers beeinflussen sollte. Sollten Sie zum Beispiel Ihre Ergebnisse bei diskontieren, selbst wenn sie bei signifikant sind ? Hinweis: Ich spreche vom FDR im Zusammenhang mit der Untersuchung der Ergebnisse mehrerer Studien …

2
Entspricht die Zurückweisung der Hypothese mit dem p-Wert der Hypothese, die nicht zum Konfidenzintervall gehört?
Während ich formal das Konfidenzintervall einer Schätzung ableitete, kam ich zu einer Formel, die der Berechnung des Werts sehr ähnlich ist.ppp Daher die Frage: Sind sie formal gleichwertig? Dh lehnt eine Hypothese mit einem kritischen Wert gleich nicht zum Konfidenzintervall mit kritischem Wert ?H0=0H0=0H_0 = 0αα\alpha000αα\alpha


3
Berechnung des p-Wertes mit Bootstrap mit R
Ich benutze das "boot" -Paket, um einen ungefähren 2-seitigen Bootstrap-P-Wert zu berechnen, aber das Ergebnis ist zu weit vom P-Wert entfernt, als dass man t.test verwenden könnte. Ich kann nicht herausfinden, was ich in meinem R-Code falsch gemacht habe. Kann mir bitte jemand einen Hinweis dazu geben time = c(14,18,11,13,18,17,21,9,16,17,14,15, …

1
Berechnung der Wiederholbarkeit von Effekten aus einem früheren Modell
Ich bin gerade auf diese Arbeit gestoßen , in der beschrieben wird, wie die Wiederholbarkeit (auch bekannt als Zuverlässigkeit, auch bekannt als Intraclass-Korrelation) einer Messung über Mixed-Effects-Modellierung berechnet wird. Der R-Code wäre: #fit the model fit = lmer(dv~(1|unit),data=my_data) #obtain the variance estimates vc = VarCorr(fit) residual_var = attr(vc,'sc')^2 intercept_var = …
28 mixed-model  reliability  intraclass-correlation  repeatability  spss  factor-analysis  survey  modeling  cross-validation  error  curve-fitting  mediation  correlation  clustering  sampling  machine-learning  probability  classification  metric  r  project-management  optimization  svm  python  dataset  quality-control  checking  clustering  distributions  anova  factor-analysis  exponential  poisson-distribution  generalized-linear-model  deviance  machine-learning  k-nearest-neighbour  r  hypothesis-testing  t-test  r  variance  levenes-test  bayesian  software  bayesian-network  regression  repeated-measures  least-squares  change-scores  variance  chi-squared  variance  nonlinear-regression  regression-coefficients  multiple-comparisons  p-value  r  statistical-significance  excel  sampling  sample  r  distributions  interpretation  goodness-of-fit  normality-assumption  probability  self-study  distributions  references  theory  time-series  clustering  econometrics  binomial  hypothesis-testing  variance  t-test  paired-comparisons  statistical-significance  ab-test  r  references  hypothesis-testing  t-test  normality-assumption  wilcoxon-mann-whitney  central-limit-theorem  t-test  data-visualization  interactive-visualization  goodness-of-fit 

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.