Als «generalized-linear-model» getaggte Fragen

Eine Verallgemeinerung der linearen Regression, die nichtlineare Beziehungen über eine "Verknüpfungsfunktion" ermöglicht und die Varianz der Antwort vom vorhergesagten Wert abhängt. (Nicht zu verwechseln mit dem "allgemeinen linearen Modell", das das gewöhnliche lineare Modell auf die allgemeine Kovarianzstruktur und die multivariate Antwort erweitert.)


4
Diagnosediagramme für die Zählregression
Welche diagnostischen Diagramme (und möglicherweise formalen Tests) sind für Regressionen, bei denen das Ergebnis eine Zählvariable ist, am aussagekräftigsten? Ich interessiere mich besonders für Poisson- und negative Binomialmodelle sowie für Gegenstücke mit Null-Inflation und Hürden. Die meisten Quellen, die ich gefunden habe, zeichnen einfach die Residuen gegen angepasste Werte auf, …

4
Wann werden Gamma-GLMs verwendet?
Die Gammaverteilung kann eine große Bandbreite von Formen annehmen, und angesichts des Zusammenhangs zwischen Mittelwert und Varianz durch ihre beiden Parameter scheint sie geeignet zu sein, die Heteroskedastizität in nicht negativen Daten auf eine Art und Weise zu behandeln, wie dies bei logarithmisch transformiertem OLS der Fall ist Sie müssen …

3
Ein Beispiel: LASSO-Regression unter Verwendung von glmnet für binäre Ergebnisse
Ich beginne mit der Verwendung von dabble glmnetmit LASSO Regression , wo mein Ergebnis von Interesse dichotomous ist. Ich habe unten einen kleinen nachgebildeten Datenrahmen erstellt: age <- c(4, 8, 7, 12, 6, 9, 10, 14, 7) gender <- c(1, 0, 1, 1, 1, 0, 1, 0, 0) bmi_p <- …
77 r  self-study  lasso  regression  interpretation  anova  statistical-significance  survey  conditional-probability  independence  naive-bayes  graphical-model  r  time-series  forecasting  arima  r  forecasting  exponential-smoothing  bootstrap  outliers  r  regression  poisson-distribution  zero-inflation  genetic-algorithms  machine-learning  feature-selection  cart  categorical-data  interpretation  descriptive-statistics  variance  multivariate-analysis  covariance-matrix  r  data-visualization  generalized-linear-model  binomial  proportion  pca  matlab  svd  time-series  correlation  spss  arima  chi-squared  curve-fitting  text-mining  zipf  probability  categorical-data  distance  group-differences  bhattacharyya  regression  variance  mean  data-visualization  variance  clustering  r  standard-error  association-measure  somers-d  normal-distribution  integral  numerical-integration  bayesian  clustering  python  pymc  nonparametric-bayes  machine-learning  svm  kernel-trick  hyperparameter  poisson-distribution  mean  continuous-data  univariate  missing-data  dag  python  likelihood  dirichlet-distribution  r  anova  hypothesis-testing  statistical-significance  p-value  rating  data-imputation  censoring  threshold 

5
Was sind moderne, einfach zu verwendende Alternativen zur schrittweisen Regression?
Ich habe einen Datensatz mit ungefähr 30 unabhängigen Variablen und möchte ein verallgemeinertes lineares Modell (GLM) erstellen, um die Beziehung zwischen ihnen und der abhängigen Variablen zu untersuchen. Mir ist bewusst, dass die Methode, die mir für diese Situation beigebracht wurde, die schrittweise Regression, jetzt als statistische Sünde angesehen wird …

4
Was ist der Unterschied zwischen einer "Linkfunktion" und einer "kanonischen Linkfunktion" für GLM?
Was ist der Unterschied zwischen den Begriffen "Link-Funktion" und "Canonical Link-Funktion"? Gibt es auch irgendwelche (theoretischen) Vorteile, wenn man eins gegenüber dem anderen verwendet? Beispielsweise kann eine binäre Antwortvariable unter Verwendung vieler Verknüpfungsfunktionen wie logit , probit usw. modelliert werden. Logit wird hier jedoch als die "kanonische" Verknüpfungsfunktion betrachtet.

1
Wie interpretiere ich Koeffizienten in einer Poisson-Regression?
Wie kann ich die Haupteffekte (Koeffizienten für Dummy-codierten Faktor) in einer Poisson-Regression interpretieren? Nehmen wir das folgende Beispiel an: treatment <- factor(rep(c(1, 2), c(43, 41)), levels = c(1, 2), labels = c("placebo", "treated")) improved <- factor(rep(c(1, 2, 3, 1, 2, 3), c(29, 7, 7, 13, 7, 21)), levels = c(1, …


1
Warum wird die Quadratwurzeltransformation für Zählungsdaten empfohlen?
Es wird oft empfohlen, die Quadratwurzel zu ziehen, wenn Sie Daten zählen. (Beispiele auf CV finden @ HarveyMotulsky Antwort hier oder @ whuber Antwort hier .) Auf der anderen Seite, wenn ein allgemeines lineares Modell mit einer Reaktionsvariable passend als Poisson verteilte, ist das Protokoll der kanonische Link . Dies …

4
Auswahl zwischen LM und GLM für eine log-transformierte Antwortvariable
Ich versuche die Philosophie zu verstehen, die hinter der Verwendung eines generalisierten linearen Modells (GLM) gegenüber einem linearen Modell (LM) steckt. Ich habe unten einen Beispieldatensatz erstellt: Log( y) = x + εLog⁡(y)=X+ε\log(y) = x + \varepsilon Das Beispiel hat nicht den Fehler als Funktion der Größe vonyεε\varepsilonyyy , daher …

9
Empfehlung für erweiterte Statistikbücher
Auf dieser Website gibt es mehrere Themen mit Buchempfehlungen zu Einführungsstatistiken und maschinellem Lernen. Ich suche jedoch nach einem Text zu erweiterten Statistiken, der nach Priorität geordnet ist: maximale Wahrscheinlichkeit, verallgemeinerte lineare Modelle, Hauptkomponentenanalyse, nichtlineare Modelle . Ich habe versucht, statistische Modelle von AC Davison, aber ehrlich gesagt musste ich …

1
Erhalten von vorhergesagten Werten (Y = 1 oder 0) aus einer logistischen Regressionsmodellanpassung
Nehmen wir an, ich habe ein Klassenobjekt glm(das einem logistischen Regressionsmodell entspricht) und möchte die predict.glmmit dem Argument angegebenen vorhergesagten Wahrscheinlichkeiten type="response"in binäre Antworten umwandeln, dh oder . Was ist der schnellste und kanonischste Weg, dies in R zu tun?Y.= 1Y=1Y=1Y.= 0Y=0Y=0 Auch predict.glmwenn mir bewusst ist , dass ich …



3
Lineares Modell mit logarithmisch transformierter Antwort vs. verallgemeinertes lineares Modell mit logarithmischer Verknüpfung
In diesem Artikel mit dem Titel "AUSWAHL VON GENERALISIERTEN LINEAREN MODELLEN FÜR MEDIZINISCHE DATEN" schreiben die Autoren: In einem verallgemeinerten linearen Modell wird der Mittelwert durch die Verknüpfungsfunktion transformiert, anstatt die Antwort selbst zu transformieren. Die beiden Transformationsmethoden können zu sehr unterschiedlichen Ergebnissen führen. Beispielsweise ist der Mittelwert der logarithmisch …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.