Ich versuche die Philosophie zu verstehen, die hinter der Verwendung eines generalisierten linearen Modells (GLM) gegenüber einem linearen Modell (LM) steckt. Ich habe unten einen Beispieldatensatz erstellt:
Das Beispiel hat nicht den Fehler als Funktion der Größe vony , daher würde ich annehmen, dass ein lineares Modell des logarithmisch transformierten y das beste wäre. Im folgenden Beispiel ist dies tatsächlich der Fall (glaube ich), da der AIC des LM auf den log-transformierten Daten am niedrigsten ist. Der AIC der Gamma-Verteilung GLM mit einer Log-Link-Funktion hat eine geringere Quadratsumme (SS), aber die zusätzlichen Freiheitsgrade führen zu einem etwas höheren AIC. Ich war überrascht, dass der AIC der Gaußschen Verteilung so viel höher ist (obwohl der SS das niedrigste Modell ist).
Ich hoffe, einige Ratschläge zu erhalten, wann man sich GLM-Modellen nähern sollte - dh gibt es etwas, nach dem ich in meinen Residuen für LM-Modelle Ausschau halten sollte, um mir mitzuteilen, dass eine andere Verteilung angemessener ist? Wie ist bei der Auswahl einer geeigneten Distributionsfamilie vorzugehen?
Vielen Dank im Voraus für Ihre Hilfe.
[EDIT]: Ich habe jetzt die Auswertungsstatistik so angepasst, dass die SS des log-transformierten linearen Modells mit den GLM-Modellen mit der Log-Link-Funktion vergleichbar ist. Ein Diagramm der Statistik wird jetzt angezeigt.
Beispiel
set.seed(1111)
n <- 1000
y <- rnorm(n, mean=0, sd=1)
y <- exp(y)
hist(y, n=20)
hist(log(y), n=20)
x <- log(y) - rnorm(n, mean=0, sd=1)
hist(x, n=20)
df <- data.frame(y=y, x=x)
df2 <- data.frame(x=seq(from=min(df$x), to=max(df$x),,100))
#models
mod.name <- "LM"
assign(mod.name, lm(y ~ x, df))
summary(get(mod.name))
plot(y ~ x, df)
lines(predict(get(mod.name), newdata=df2) ~ df2$x, col=2)
mod.name <- "LOG.LM"
assign(mod.name, lm(log(y) ~ x, df))
summary(get(mod.name))
plot(y ~ x, df)
lines(exp(predict(get(mod.name), newdata=df2)) ~ df2$x, col=2)
mod.name <- "LOG.GAUSS.GLM"
assign(mod.name, glm(y ~ x, df, family=gaussian(link="log")))
summary(get(mod.name))
plot(y ~ x, df)
lines(predict(get(mod.name), newdata=df2, type="response") ~ df2$x, col=2)
mod.name <- "LOG.GAMMA.GLM"
assign(mod.name, glm(y ~ x, df, family=Gamma(link="log")))
summary(get(mod.name))
plot(y ~ x, df)
lines(predict(get(mod.name), newdata=df2, type="response") ~ df2$x, col=2)
#Results
model.names <- list("LM", "LOG.LM", "LOG.GAUSS.GLM", "LOG.GAMMA.GLM")
plot(y ~ x, df, log="y", pch=".", cex=3, col=8)
lines(predict(LM, newdata=df2) ~ df2$x, col=1, lwd=2)
lines(exp(predict(LOG.LM, newdata=df2)) ~ df2$x, col=2, lwd=2)
lines(predict(LOG.GAUSS.GLM, newdata=df2, type="response") ~ df2$x, col=3, lwd=2)
lines(predict(LOG.GAMMA.GLM, newdata=df2, type="response") ~ df2$x, col=4, lwd=2)
legend("topleft", legend=model.names, col=1:4, lwd=2, bty="n")
res.AIC <- as.matrix(
data.frame(
LM=AIC(LM),
LOG.LM=AIC(LOG.LM),
LOG.GAUSS.GLM=AIC(LOG.GAUSS.GLM),
LOG.GAMMA.GLM=AIC(LOG.GAMMA.GLM)
)
)
res.SS <- as.matrix(
data.frame(
LM=sum((predict(LM)-y)^2),
LOG.LM=sum((exp(predict(LOG.LM))-y)^2),
LOG.GAUSS.GLM=sum((predict(LOG.GAUSS.GLM, type="response")-y)^2),
LOG.GAMMA.GLM=sum((predict(LOG.GAMMA.GLM, type="response")-y)^2)
)
)
res.RMS <- as.matrix(
data.frame(
LM=sqrt(mean((predict(LM)-y)^2)),
LOG.LM=sqrt(mean((exp(predict(LOG.LM))-y)^2)),
LOG.GAUSS.GLM=sqrt(mean((predict(LOG.GAUSS.GLM, type="response")-y)^2)),
LOG.GAMMA.GLM=sqrt(mean((predict(LOG.GAMMA.GLM, type="response")-y)^2))
)
)
png("stats.png", height=7, width=10, units="in", res=300)
#x11(height=7, width=10)
par(mar=c(10,5,2,1), mfcol=c(1,3), cex=1, ps=12)
barplot(res.AIC, main="AIC", las=2)
barplot(res.SS, main="SS", las=2)
barplot(res.RMS, main="RMS", las=2)
dev.off()